LArSoft  v10_04_05
Liquid Argon Software toolkit - https://larsoft.org/
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
CalWire_module.cc
Go to the documentation of this file.
1 //
3 // CalWire class
4 //
5 // brebel@fnal.gov
6 //
8 
9 // ROOT includes
10 #include <TComplex.h>
11 #include <TF1.h>
12 #include <TFile.h>
13 #include <TH1D.h>
14 #include <TH2D.h>
15 
16 // Framework includes
17 #include "art/Framework/Core/EDProducer.h" // include the proper bit of the framework
24 #include "cetlib/search_path.h"
25 #include "cetlib_except/exception.h"
26 #include "fhiclcpp/ParameterSet.h"
28 
29 // LArSoft includes
31 #include "larcoreobj/SimpleTypesAndConstants/RawTypes.h" // raw::ChannelID_t
36 #include "lardataobj/RawData/raw.h"
38 
40 namespace caldata {
41 
42  class CalWire : public art::EDProducer {
43  public:
44  // create calibrated signals on wires. this class runs an fft to remove the
45  // electronics shaping.
46  explicit CalWire(fhicl::ParameterSet const& pset);
47 
48  private:
49  void produce(art::Event& evt) override;
50  void beginJob() override;
51 
52  std::string fResponseFile;
53  int fExpEndBins;
56  std::string fDigitModuleLabel;
57 
58  std::vector<std::vector<TComplex>> fKernelR;
59  std::vector<std::vector<TComplex>> fKernelS;
61  std::vector<double> fDecayConstsR;
63  std::vector<double> fDecayConstsS;
65  std::vector<int> fKernMapR;
67  std::vector<int> fKernMapS;
69  }; // class CalWire
71 }
72 
73 namespace caldata {
74 
75  //-------------------------------------------------
77  {
78  fDigitModuleLabel = pset.get<std::string>("DigitModuleLabel", "daq");
79  cet::search_path sp("FW_SEARCH_PATH");
80  sp.find_file(pset.get<std::string>("ResponseFile"), fResponseFile);
81  fExpEndBins = pset.get<int>("ExponentialEndBins");
82  fPostsample = pset.get<int>("PostsampleBins");
83 
84  produces<std::vector<recob::Wire>>();
85  produces<art::Assns<raw::RawDigit, recob::Wire>>();
86  }
87 
88  //-------------------------------------------------
90  {
91  MF_LOG_DEBUG("CalWire") << "CalWire_plugin: Opening Electronics Response File: "
92  << fResponseFile.c_str();
93 
94  TFile f(fResponseFile.c_str());
95  if (f.IsZombie())
96  mf::LogWarning("CalWire") << "Cannot open response file " << fResponseFile.c_str();
97 
98  TH2D* respRe = dynamic_cast<TH2D*>(f.Get("real/RespRe"));
99  TH2D* respIm = dynamic_cast<TH2D*>(f.Get("real/RespIm"));
100  TH1D* decayHist = dynamic_cast<TH1D*>(f.Get("real/decayHist"));
101  unsigned int wires = decayHist->GetNbinsX();
102  unsigned int bins = respRe->GetYaxis()->GetNbins();
103  unsigned int bin = 0;
104  unsigned int wire = 0;
105  fDecayConstsR.resize(wires);
106  fKernMapR.resize(wires);
107  fKernelR.resize(respRe->GetXaxis()->GetNbins());
108  const TArrayD* edges = respRe->GetXaxis()->GetXbins();
109  for (int i = 0; i < respRe->GetXaxis()->GetNbins(); ++i) {
110  fKernelR[i].resize(bins);
111  for (bin = 0; bin < bins; ++bin) {
112  const TComplex a(respRe->GetBinContent(i + 1, bin + 1),
113  respIm->GetBinContent(i + 1, bin + 1));
114  fKernelR[i][bin] = a;
115  }
116  for (; wire < (*edges)[i + 1]; ++wire) {
117  fKernMapR[wire] = i;
118  fDecayConstsR[wire] = decayHist->GetBinContent(wire + 1);
119  }
120  }
121  respRe = dynamic_cast<TH2D*>(f.Get("sim/RespRe"));
122  respIm = dynamic_cast<TH2D*>(f.Get("sim/RespIm"));
123  decayHist = dynamic_cast<TH1D*>(f.Get("sim/decayHist"));
124  wires = decayHist->GetNbinsX();
125  bins = respRe->GetYaxis()->GetNbins();
126  fDecayConstsS.resize(wires);
127  fKernMapS.resize(wires);
128  fKernelS.resize(respRe->GetXaxis()->GetNbins());
129  const TArrayD* edges1 = respRe->GetXaxis()->GetXbins();
130  wire = 0;
131  for (int i = 0; i < respRe->GetXaxis()->GetNbins(); ++i) {
132  fKernelS[i].resize(bins);
133  for (bin = 0; bin < bins; ++bin) {
134  const TComplex b(respRe->GetBinContent(i + 1, bin + 1),
135  respIm->GetBinContent(i + 1, bin + 1));
136  fKernelS[i][bin] = b;
137  }
138  for (; wire < (*edges1)[i + 1]; ++wire) {
139  fKernMapS[wire] = i;
140  fDecayConstsS[wire] = decayHist->GetBinContent(wire + 1);
141  }
142  }
143 
144  f.Close();
145  }
146 
149  {
151 
152  std::vector<double> decayConsts;
153  std::vector<int> kernMap;
154  std::vector<std::vector<TComplex>> kernel;
155  //Put correct response functions and decay constants in place
156  if (evt.isRealData()) {
157  decayConsts = fDecayConstsR;
158  kernMap = fKernMapR;
159  kernel = fKernelR;
160  }
161  else {
162  decayConsts = fDecayConstsS;
163  kernMap = fKernMapS;
164  kernel = fKernelS;
165  }
166 
167  // get the FFT service to have access to the FFT size
169 
170  // make a collection of Wires
171  std::unique_ptr<std::vector<recob::Wire>> wirecol(new std::vector<recob::Wire>);
172  // ... and an association set
173  std::unique_ptr<art::Assns<raw::RawDigit, recob::Wire>> WireDigitAssn(
175 
176  // Read in the digit List object(s).
178  evt.getByLabel(fDigitModuleLabel, digitVecHandle);
179 
180  if (!digitVecHandle->size()) return;
181  mf::LogInfo("CalWire") << "CalWire:: digitVecHandle size is " << digitVecHandle->size();
182 
183  // Use the handle to get a particular (0th) element of collection.
184  art::Ptr<raw::RawDigit> digitVec0(digitVecHandle, 0);
185 
186  unsigned int dataSize = digitVec0->Samples(); //size of raw data vectors
187 
188  int transformSize = fFFT->FFTSize();
189  raw::ChannelID_t channel(raw::InvalidChannelID); // channel number
190  unsigned int bin(0); // time bin loop variable
191 
192  double decayConst = 0.; // exponential decay constant of electronics shaping
193  double fitAmplitude = 0.; //This is the seed value for the amplitude in the exponential tail fit
194  std::vector<float> holder; // holds signal data
195  std::vector<short> rawadc(transformSize); // vector holding uncompressed adc values
196  std::vector<TComplex> freqHolder(transformSize + 1); // temporary frequency data
197 
198  // loop over all wires
199  for (unsigned int rdIter = 0; rdIter < digitVecHandle->size(); ++rdIter) { // ++ move
200  holder.clear();
201 
202  art::Ptr<raw::RawDigit> digitVec(digitVecHandle, rdIter);
203  channel = digitVec->Channel();
204 
205  holder.resize(transformSize);
206 
207  // uncompress the data
208  raw::Uncompress(digitVec->ADCs(), rawadc, digitVec->Compression());
209 
210  for (bin = 0; bin < dataSize; ++bin)
211  holder[bin] = (rawadc[bin] - digitVec->GetPedestal());
212  // fExpEndBins only nonzero for detectors needing exponential tail fitting
213  if (fExpEndBins && std::abs(decayConsts[channel]) > 0.0) {
214 
215  TH1D expTailData(
216  "expTailData", "Tail data for fit", fExpEndBins, dataSize - fExpEndBins, dataSize);
217  TF1 expFit("expFit", "[0]*exp([1]*x)");
218 
219  for (bin = 0; bin < (unsigned int)fExpEndBins; ++bin)
220  expTailData.Fill(dataSize - fExpEndBins + bin, holder[dataSize - fExpEndBins + bin]);
221  decayConst = decayConsts[channel];
222  fitAmplitude = holder[dataSize - fExpEndBins] / exp(decayConst * (dataSize - fExpEndBins));
223  expFit.FixParameter(1, decayConst);
224  expFit.SetParameter(0, fitAmplitude);
225  expTailData.Fit(&expFit, "QWN", "", dataSize - fExpEndBins, dataSize);
226  expFit.SetRange(dataSize, transformSize);
227  for (bin = 0; bin < dataSize; ++bin)
228  holder[dataSize + bin] = expFit.Eval(bin + dataSize);
229  }
230  // This is actually deconvolution, by way of convolution with the inverted kernel.
231  // This code assumes the response function has already been been transformed and
232  // inverted. This way a complex multiplication, rather than a complex division is
233  // performed saving 2 multiplications and 2 divsions
234 
235  // the example below is for MicroBooNE, experiments should adapt as appropriate
236 
237  // Figure out which kernel to use (0=induction, 1=collection).
238  geo::SigType_t sigtype = geom->Get().SignalType(channel);
239  size_t k;
240  if (sigtype == geo::kInduction)
241  k = 0;
242  else if (sigtype == geo::kCollection)
243  k = 1;
244  else
245  throw cet::exception("CalWire") << "Bad signal type = " << sigtype << "\n";
246  if (k >= kernel.size()) throw cet::exception("CalWire") << "kernel size < " << k << "!\n";
247 
248  fFFT->Convolute(holder, kernel[k]);
249 
250  holder.resize(dataSize, 1e-5);
251  //This restores the DC component to signal removed by the deconvolution.
252  if (fPostsample) {
253  double average = 0.0;
254  for (bin = 0; bin < (unsigned int)fPostsample; ++bin)
255  average += holder[holder.size() - 1 - bin] / (double)fPostsample;
256  for (bin = 0; bin < holder.size(); ++bin)
257  holder[bin] -= average;
258  }
259  wirecol->push_back(recob::WireCreator(holder, *digitVec).move());
260  // add an association between the last object in wirecol (that we just inserted) and
261  // digitVec
262  if (!util::CreateAssn(evt, *wirecol, digitVec, *WireDigitAssn)) {
264  << "Can't associate wire #" << (wirecol->size() - 1) << " with raw digit #"
265  << digitVec.key();
266  } // if failed to add association
267  } // for raw digits
268 
269  if (wirecol->empty()) mf::LogWarning("CalWire") << "No wires made for this event.";
270 
271  evt.put(std::move(wirecol));
272  evt.put(std::move(WireDigitAssn));
273  }
274 
275 } // end namespace caldata
276 
float GetPedestal() const
Definition: RawDigit.h:221
const ADCvector_t & ADCs() const
Reference to the compressed ADC count vector.
Definition: RawDigit.h:209
ULong64_t Samples() const
Number of samples in the uncompressed ADC data.
Definition: RawDigit.h:217
std::string fResponseFile
void beginJob() override
MaybeLogger_< ELseverityLevel::ELsev_info, false > LogInfo
std::vector< int > fKernMapR
Helper functions to create a wire.
EDProducer(fhicl::ParameterSet const &pset)
Definition: EDProducer.cc:6
ChannelID_t Channel() const
DAQ channel this raw data was read from.
Definition: RawDigit.h:213
constexpr auto abs(T v)
Returns the absolute value of the argument.
std::vector< double > fDecayConstsR
Definition of basic raw digits.
SigType_t SignalType(PlaneID const &pid) const
Returns the type of signal on the channels of specified TPC plane.
bool isRealData() const
Definition: Event.cc:53
Class managing the creation of a new recob::Wire object.
Definition: WireCreator.h:55
creation of calibrated signals on wires
void produce(art::Event &evt) override
WireReadoutGeom const & Get() const
Definition: WireReadout.h:36
PutHandle< PROD > put(std::unique_ptr< PROD > &&edp, std::string const &instance={})
Definition: Event.h:77
TFile f
Definition: plotHisto.C:6
std::vector< double > fDecayConstsS
int FFTSize() const
Definition: LArFFT.h:66
constexpr ChannelID_t InvalidChannelID
ID of an invalid channel.
Definition: RawTypes.h:31
#define DEFINE_ART_MODULE(klass)
Definition: ModuleMacros.h:65
Signal from induction planes.
Definition: geo_types.h:147
enum geo::_plane_sigtype SigType_t
Enumerate the possible plane projections.
Collect all the RawData header files together.
key_type key() const noexcept
Definition: Ptr.h:166
void Convolute(std::vector< T > &input, std::vector< T > &respFunc)
Definition: LArFFT.h:170
float bin[41]
Definition: plottest35.C:14
std::vector< std::vector< TComplex > > fKernelR
raw::Compress_t Compression() const
Compression algorithm used to store the ADC counts.
Definition: RawDigit.h:229
bool CreateAssn(art::Event &evt, std::vector< T > const &a, art::Ptr< U > const &b, art::Assns< U, T > &assn, std::string a_instance, size_t index=UINT_MAX)
Creates a single one-to-one association.
cet::coded_exception< errors::ErrorCodes, ExceptionDetail::translate > Exception
Definition: Exception.h:66
bool getByLabel(std::string const &label, std::string const &instance, Handle< PROD > &result) const
Utility object to perform functions of association.
std::string fDigitModuleLabel
module that made digits
std::vector< std::vector< TComplex > > fKernelS
int fExpEndBins
number of end bins to consider for tail fit
#define MF_LOG_DEBUG(id)
Declaration of basic channel signal object.
int fPostsample
number of postsample bins
TCEvent evt
Definition: DataStructs.cxx:8
std::vector< int > fKernMapS
unsigned int ChannelID_t
Type representing the ID of a readout channel.
Definition: RawTypes.h:28
void Uncompress(const std::vector< short > &adc, std::vector< short > &uncompressed, raw::Compress_t compress)
Uncompresses a raw data buffer.
Definition: raw.cxx:744
Float_t e
Definition: plot.C:35
CalWire(fhicl::ParameterSet const &pset)
cet::coded_exception< error, detail::translate > exception
Definition: exception.h:33
Signal from collection planes.
Definition: geo_types.h:148