LArSoft  v10_04_05
Liquid Argon Software toolkit - https://larsoft.org/
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
lar_cluster3d::DBScanAlg Class Reference

DBScanAlg class definiton. More...

Inheritance diagram for lar_cluster3d::DBScanAlg:
lar_cluster3d::IClusterAlg

Public Types

enum  TimeValues {
  BUILDTHREEDHITS = 0, BUILDHITTOHITMAP = 1, RUNDBSCAN = 2, BUILDCLUSTERINFO = 3,
  PATHFINDING = 4, NUMTIMEVALUES
}
 enumerate the possible values for time checking if monitoring timing More...
 

Public Member Functions

 DBScanAlg (fhicl::ParameterSet const &pset)
 Constructor. More...
 
void Cluster3DHits (reco::HitPairList &hitPairList, reco::ClusterParametersList &clusterParametersList) const override
 Given a set of recob hits, run DBscan to form 3D clusters. More...
 
void Cluster3DHits (reco::HitPairListPtr &hitPairList, reco::ClusterParametersList &clusterParametersList) const override
 Given a set of recob hits, run DBscan to form 3D clusters. More...
 
float getTimeToExecute (IClusterAlg::TimeValues index) const override
 If monitoring, recover the time to execute a particular function. More...
 

Private Member Functions

void expandCluster (const kdTree::KdTreeNode &, kdTree::CandPairList &, reco::ClusterParameters &, size_t) const
 the main routine for DBScan More...
 

Private Attributes

bool m_enableMonitoring
 Data members to follow. More...
 
size_t m_minPairPts
 
std::vector< float > m_timeVector
 
std::unique_ptr< lar_cluster3d::IClusterParametersBuilderm_clusterBuilder
 Common cluster builder tool. More...
 
kdTree m_kdTree
 

Detailed Description

DBScanAlg class definiton.

Definition at line 35 of file DBScanAlg_tool.cc.

Member Enumeration Documentation

enumerate the possible values for time checking if monitoring timing

Enumerator
BUILDTHREEDHITS 
BUILDHITTOHITMAP 
RUNDBSCAN 
BUILDCLUSTERINFO 
PATHFINDING 
NUMTIMEVALUES 

Definition at line 49 of file IClusterAlg.h.

Constructor & Destructor Documentation

lar_cluster3d::DBScanAlg::DBScanAlg ( fhicl::ParameterSet const &  pset)
explicit

Constructor.

Parameters
pset

Definition at line 91 of file DBScanAlg_tool.cc.

References Get, fhicl::ParameterSet::get(), m_clusterBuilder, m_enableMonitoring, m_kdTree, m_minPairPts, and fhicl::ParameterSet::put_or_replace().

92  {
93  m_enableMonitoring = pset.get<bool>("EnableMonitoring", true);
94  m_minPairPts = pset.get<size_t>("MinPairPts", 2);
95 
96  m_clusterBuilder = art::make_tool<lar_cluster3d::IClusterParametersBuilder>(
97  pset.get<fhicl::ParameterSet>("ClusterParamsBuilder"));
98 
99  // Recover the parameter set for the kdTree
100  fhicl::ParameterSet kdTreeParams(pset.get<fhicl::ParameterSet>("kdTree"));
101 
102  // Now work out the maximum wire pitch
103  auto const& wireReadoutGeom = art::ServiceHandle<geo::WireReadout>()->Get();
104 
105  // Returns the wire pitch per plane assuming they will be the same for all TPCs
106  constexpr geo::TPCID tpcid{0, 0};
107  std::vector<double> const wirePitchVec{
108  wireReadoutGeom.Plane(geo::PlaneID{tpcid, 0}).WirePitch(),
109  wireReadoutGeom.Plane(geo::PlaneID{tpcid, 1}).WirePitch(),
110  wireReadoutGeom.Plane(geo::PlaneID{tpcid, 2}).WirePitch()};
111 
112  float maxBestDist = 1.99 * *std::max_element(wirePitchVec.begin(), wirePitchVec.end());
113 
114  kdTreeParams.put_or_replace<float>("RefLeafBestDist", maxBestDist);
115 
116  m_kdTree = kdTree(kdTreeParams);
117  }
bool m_enableMonitoring
Data members to follow.
The data type to uniquely identify a Plane.
Definition: geo_types.h:364
cout<< "Opened file "<< fin<< " ixs= "<< ixs<< endl;if(ixs==0) hhh=(TH1F *) fff-> Get("h1")
Definition: AddMC.C:8
The data type to uniquely identify a TPC.
Definition: geo_types.h:306
std::unique_ptr< lar_cluster3d::IClusterParametersBuilder > m_clusterBuilder
Common cluster builder tool.

Member Function Documentation

void lar_cluster3d::DBScanAlg::Cluster3DHits ( reco::HitPairList hitPairList,
reco::ClusterParametersList clusterParametersList 
) const
overridevirtual

Given a set of recob hits, run DBscan to form 3D clusters.

Parameters
hitPairListThe input list of 3D hits to run clustering on
clusterParametersListA list of cluster objects (parameters from associated hits)

Driver for processing input 2D hits, transforming to 3D hits and building lists of associated 3D hits (candidate 3D clusters)

Implements lar_cluster3d::IClusterAlg.

Definition at line 119 of file DBScanAlg_tool.cc.

References reco::ClusterParameters::addHit3D(), lar_cluster3d::IClusterAlg::BUILDCLUSTERINFO, lar_cluster3d::IClusterAlg::BUILDHITTOHITMAP, lar_cluster3d::kdTree::BuildKdTree(), reco::ClusterHit3D::CLUSTERATTACHED, reco::ClusterHit3D::CLUSTERNOISE, reco::ClusterHit3D::CLUSTERVISITED, expandCluster(), lar_cluster3d::kdTree::FindNearestNeighbors(), lar_cluster3d::kdTree::getTimeToExecute(), m_clusterBuilder, m_enableMonitoring, m_kdTree, m_minPairPts, m_timeVector, lar_cluster3d::IClusterAlg::NUMTIMEVALUES, and lar_cluster3d::IClusterAlg::RUNDBSCAN.

121  {
126  cet::cpu_timer theClockDBScan;
127 
128  m_timeVector.resize(NUMTIMEVALUES, 0.);
129 
130  // DBScan is driven of its "epsilon neighborhood". Computing adjacency within DBScan can be time
131  // consuming so the idea is the prebuild the adjaceny map and then run DBScan.
132  // We'll employ a kdTree to implement this scheme
133  kdTree::KdTreeNodeList kdTreeNodeContainer;
134  kdTree::KdTreeNode topNode = m_kdTree.BuildKdTree(hitPairList, kdTreeNodeContainer);
135 
137 
138  if (m_enableMonitoring) theClockDBScan.start();
139 
140  // Ok, here we go!
141  // The idea is to loop through all of the input 3D hits and do the clustering
142  for (const auto& hit : hitPairList) {
143  // Check if the hit has already been visited
144  if (hit.getStatusBits() & reco::ClusterHit3D::CLUSTERVISITED) continue;
145 
146  // Mark as visited
148 
149  // Find the neighborhood for this hit
150  kdTree::CandPairList candPairList;
151  float bestDistance(std::numeric_limits<float>::max());
152 
153  m_kdTree.FindNearestNeighbors(&hit, topNode, candPairList, bestDistance);
154 
155  if (candPairList.size() < m_minPairPts) {
157  }
158  else {
159  // "Create" a new cluster and get a reference to it
160  clusterParametersList.push_back(reco::ClusterParameters());
161 
162  reco::ClusterParameters& curCluster = clusterParametersList.back();
163 
165  curCluster.addHit3D(&hit);
166 
167  // expand the cluster
168  expandCluster(topNode, candPairList, curCluster, m_minPairPts);
169  }
170  }
171 
172  if (m_enableMonitoring) {
173  theClockDBScan.stop();
174 
175  m_timeVector[RUNDBSCAN] = theClockDBScan.accumulated_real_time();
176  }
177 
178  // Initial clustering is done, now trim the list and get output parameters
179  cet::cpu_timer theClockBuildClusters;
180 
181  // Start clocks if requested
182  if (m_enableMonitoring) theClockBuildClusters.start();
183 
184  m_clusterBuilder->BuildClusterInfo(clusterParametersList);
185 
186  if (m_enableMonitoring) {
187  theClockBuildClusters.stop();
188 
189  m_timeVector[BUILDCLUSTERINFO] = theClockBuildClusters.accumulated_real_time();
190  }
191 
192  mf::LogDebug("Cluster3D") << ">>>>> DBScan done, found " << clusterParametersList.size()
193  << " clusters" << std::endl;
194  }
void expandCluster(const kdTree::KdTreeNode &, kdTree::CandPairList &, reco::ClusterParameters &, size_t) const
the main routine for DBScan
bool m_enableMonitoring
Data members to follow.
std::list< KdTreeNode > KdTreeNodeList
Definition: kdTree.h:69
size_t FindNearestNeighbors(const reco::ClusterHit3D *, const KdTreeNode &, CandPairList &, float &) const
Definition: kdTree.cxx:183
Labelled "noise" by a clustering algorithm.
Definition: Cluster3D.h:105
std::unique_ptr< lar_cluster3d::IClusterParametersBuilder > m_clusterBuilder
Common cluster builder tool.
Detector simulation of raw signals on wires.
std::list< CandPair > CandPairList
Definition: kdTree.h:84
MaybeLogger_< ELseverityLevel::ELsev_success, false > LogDebug
float getTimeToExecute() const
Definition: kdTree.h:104
"visited" by a clustering algorithm
Definition: Cluster3D.h:104
std::vector< float > m_timeVector
KdTreeNode & BuildKdTree(Hit3DVec::iterator, Hit3DVec::iterator, KdTreeNodeList &, int depth=0) const
Given an input set of ClusterHit3D objects, build a kd tree structure.
Definition: kdTree.cxx:109
attached to a cluster
Definition: Cluster3D.h:106
void addHit3D(const reco::ClusterHit3D *hit3D)
Definition: Cluster3D.h:445
void lar_cluster3d::DBScanAlg::Cluster3DHits ( reco::HitPairListPtr hitPairList,
reco::ClusterParametersList clusterParametersList 
) const
overridevirtual

Given a set of recob hits, run DBscan to form 3D clusters.

Parameters
hitPairListThe input list of 3D hits to run clustering on
clusterParametersListA list of cluster objects (parameters from associated hits)

Driver for processing input 2D hits, transforming to 3D hits and building lists of associated 3D hits (candidate 3D clusters)

Implements lar_cluster3d::IClusterAlg.

Definition at line 196 of file DBScanAlg_tool.cc.

References reco::ClusterParameters::addHit3D(), lar_cluster3d::IClusterAlg::BUILDCLUSTERINFO, lar_cluster3d::IClusterAlg::BUILDHITTOHITMAP, lar_cluster3d::kdTree::BuildKdTree(), reco::ClusterHit3D::CLUSTERATTACHED, reco::ClusterHit3D::CLUSTERNOISE, reco::ClusterHit3D::CLUSTERVISITED, expandCluster(), lar_cluster3d::kdTree::FindNearestNeighbors(), lar_cluster3d::kdTree::getTimeToExecute(), m_clusterBuilder, m_enableMonitoring, m_kdTree, m_minPairPts, m_timeVector, lar_cluster3d::IClusterAlg::NUMTIMEVALUES, and lar_cluster3d::IClusterAlg::RUNDBSCAN.

198  {
203  cet::cpu_timer theClockDBScan;
204 
205  m_timeVector.resize(NUMTIMEVALUES, 0.);
206 
207  // DBScan is driven of its "epsilon neighborhood". Computing adjacency within DBScan can be time
208  // consuming so the idea is the prebuild the adjaceny map and then run DBScan.
209  // We'll employ a kdTree to implement this scheme
210  kdTree::KdTreeNodeList kdTreeNodeContainer;
211  kdTree::KdTreeNode topNode = m_kdTree.BuildKdTree(hitPairList, kdTreeNodeContainer);
212 
214 
215  if (m_enableMonitoring) theClockDBScan.start();
216 
217  // Ok, here we go!
218  // The idea is to loop through all of the input 3D hits and do the clustering
219  for (const auto& hit : hitPairList) {
220  // Check if the hit has already been visited
221  if (hit->getStatusBits() & reco::ClusterHit3D::CLUSTERVISITED) continue;
222 
223  // Mark as visited
225 
226  // Find the neighborhood for this hit
227  kdTree::CandPairList candPairList;
228  float bestDistance(std::numeric_limits<float>::max());
229 
230  m_kdTree.FindNearestNeighbors(hit, topNode, candPairList, bestDistance);
231 
232  if (candPairList.size() < m_minPairPts) {
233  hit->setStatusBit(reco::ClusterHit3D::CLUSTERNOISE);
234  }
235  else {
236  // "Create" a new cluster and get a reference to it
237  clusterParametersList.push_back(reco::ClusterParameters());
238 
239  reco::ClusterParameters& curCluster = clusterParametersList.back();
240 
242  curCluster.addHit3D(hit);
243 
244  // expand the cluster
245  expandCluster(topNode, candPairList, curCluster, m_minPairPts);
246  }
247  }
248 
249  if (m_enableMonitoring) {
250  theClockDBScan.stop();
251 
252  m_timeVector[RUNDBSCAN] = theClockDBScan.accumulated_real_time();
253  }
254 
255  // Initial clustering is done, now trim the list and get output parameters
256  cet::cpu_timer theClockBuildClusters;
257 
258  // Start clocks if requested
259  if (m_enableMonitoring) theClockBuildClusters.start();
260 
261  m_clusterBuilder->BuildClusterInfo(clusterParametersList);
262 
263  if (m_enableMonitoring) {
264  theClockBuildClusters.stop();
265 
266  m_timeVector[BUILDCLUSTERINFO] = theClockBuildClusters.accumulated_real_time();
267  }
268 
269  mf::LogDebug("Cluster3D") << ">>>>> DBScan done, found " << clusterParametersList.size()
270  << " clusters" << std::endl;
271  }
void expandCluster(const kdTree::KdTreeNode &, kdTree::CandPairList &, reco::ClusterParameters &, size_t) const
the main routine for DBScan
bool m_enableMonitoring
Data members to follow.
std::list< KdTreeNode > KdTreeNodeList
Definition: kdTree.h:69
size_t FindNearestNeighbors(const reco::ClusterHit3D *, const KdTreeNode &, CandPairList &, float &) const
Definition: kdTree.cxx:183
Labelled "noise" by a clustering algorithm.
Definition: Cluster3D.h:105
std::unique_ptr< lar_cluster3d::IClusterParametersBuilder > m_clusterBuilder
Common cluster builder tool.
Detector simulation of raw signals on wires.
std::list< CandPair > CandPairList
Definition: kdTree.h:84
MaybeLogger_< ELseverityLevel::ELsev_success, false > LogDebug
float getTimeToExecute() const
Definition: kdTree.h:104
"visited" by a clustering algorithm
Definition: Cluster3D.h:104
std::vector< float > m_timeVector
KdTreeNode & BuildKdTree(Hit3DVec::iterator, Hit3DVec::iterator, KdTreeNodeList &, int depth=0) const
Given an input set of ClusterHit3D objects, build a kd tree structure.
Definition: kdTree.cxx:109
attached to a cluster
Definition: Cluster3D.h:106
void addHit3D(const reco::ClusterHit3D *hit3D)
Definition: Cluster3D.h:445
void lar_cluster3d::DBScanAlg::expandCluster ( const kdTree::KdTreeNode topNode,
kdTree::CandPairList candPairList,
reco::ClusterParameters cluster,
size_t  minPts 
) const
private

the main routine for DBScan

Definition at line 273 of file DBScanAlg_tool.cc.

References reco::ClusterParameters::addHit3D(), reco::ClusterHit3D::CLUSTERATTACHED, reco::ClusterHit3D::CLUSTERVISITED, DEFINE_ART_CLASS_TOOL, lar_cluster3d::kdTree::FindNearestNeighbors(), reco::ClusterHit3D::getStatusBits(), m_kdTree, and reco::ClusterHit3D::setStatusBit().

Referenced by Cluster3DHits(), and getTimeToExecute().

277  {
278  // This is the main inside loop for the DBScan based clustering algorithm
279 
280  // Loop over added hits until list has been exhausted
281  while (!candPairList.empty()) {
282  // Dereference the point so we can see in the debugger...
283  const reco::ClusterHit3D* neighborHit = candPairList.front().second;
284 
285  // Process if we've not been here before
286  if (!(neighborHit->getStatusBits() & reco::ClusterHit3D::CLUSTERVISITED)) {
287  // set as visited
289 
290  // get the neighborhood around this point
291  kdTree::CandPairList neighborCandPairList;
292  float bestDistance(std::numeric_limits<float>::max());
293 
294  m_kdTree.FindNearestNeighbors(neighborHit, topNode, neighborCandPairList, bestDistance);
295 
296  // If the epsilon neighborhood of this point is large enough then add its points to our list
297  if (neighborCandPairList.size() >= minPts) {
298  std::copy(neighborCandPairList.begin(),
299  neighborCandPairList.end(),
300  std::back_inserter(candPairList));
301  }
302  }
303 
304  // If the point is not yet in a cluster then we now add
305  if (!(neighborHit->getStatusBits() & reco::ClusterHit3D::CLUSTERATTACHED)) {
307  cluster.addHit3D(neighborHit);
308  }
309 
310  candPairList.pop_front();
311  }
312  }
size_t FindNearestNeighbors(const reco::ClusterHit3D *, const KdTreeNode &, CandPairList &, float &) const
Definition: kdTree.cxx:183
unsigned int getStatusBits() const
Definition: Cluster3D.h:154
std::list< CandPair > CandPairList
Definition: kdTree.h:84
"visited" by a clustering algorithm
Definition: Cluster3D.h:104
attached to a cluster
Definition: Cluster3D.h:106
void addHit3D(const reco::ClusterHit3D *hit3D)
Definition: Cluster3D.h:445
void setStatusBit(unsigned bits) const
Definition: Cluster3D.h:177
float lar_cluster3d::DBScanAlg::getTimeToExecute ( IClusterAlg::TimeValues  index) const
inlineoverridevirtual

If monitoring, recover the time to execute a particular function.

Implements lar_cluster3d::IClusterAlg.

Definition at line 65 of file DBScanAlg_tool.cc.

References expandCluster(), and m_timeVector.

66  {
67  return m_timeVector[index];
68  }
std::vector< float > m_timeVector

Member Data Documentation

std::unique_ptr<lar_cluster3d::IClusterParametersBuilder> lar_cluster3d::DBScanAlg::m_clusterBuilder
private

Common cluster builder tool.

Definition at line 87 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), and DBScanAlg().

bool lar_cluster3d::DBScanAlg::m_enableMonitoring
private

Data members to follow.

Definition at line 82 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), and DBScanAlg().

kdTree lar_cluster3d::DBScanAlg::m_kdTree
private

Definition at line 88 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), DBScanAlg(), and expandCluster().

size_t lar_cluster3d::DBScanAlg::m_minPairPts
private

Definition at line 83 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), and DBScanAlg().

std::vector<float> lar_cluster3d::DBScanAlg::m_timeVector
mutableprivate

Definition at line 84 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), and getTimeToExecute().


The documentation for this class was generated from the following file: