LArSoft  v10_04_05
Liquid Argon Software toolkit - https://larsoft.org/
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
lar_content::CandidateVertexCreationAlgorithm Class Reference

CandidateVertexCreationAlgorithm::Algorithm class. More...

#include "CandidateVertexCreationAlgorithm.h"

Inheritance diagram for lar_content::CandidateVertexCreationAlgorithm:

Public Member Functions

 CandidateVertexCreationAlgorithm ()
 Default constructor. More...
 

Private Types

typedef std::unordered_map< const pandora::Cluster *, pandora::CartesianPointVector > ClusterToSpacepointsMap
 

Private Member Functions

pandora::StatusCode Run ()
 
void SelectClusters (pandora::ClusterVector &clusterVectorU, pandora::ClusterVector &clusterVectorV, pandora::ClusterVector &clusterVectorW)
 Select a subset of input clusters (contained in the input list names) for processing in this algorithm. More...
 
void CreateEndpointCandidates (const pandora::ClusterVector &clusterVector1, const pandora::ClusterVector &clusterVector2) const
 Create candidate vertex positions by comparing pairs of cluster end positions. More...
 
void CreateEndpointVertex (const pandora::CartesianVector &position1, const pandora::HitType hitType1, const TwoDSlidingFitResult &fitResult2) const
 Create a candidate vertex position, using an end-point position from one cluster and sliding fit to a second cluster. More...
 
void CreateCrossingCandidates (const pandora::ClusterVector &clusterVectorU, const pandora::ClusterVector &clusterVectorV, const pandora::ClusterVector &clusterVectorW) const
 Extrapolate 2D clusters, find where they cross, and match crossing points between views to create vertex candidates. More...
 
void FindCrossingPoints (const pandora::ClusterVector &clusterVector, pandora::CartesianPointVector &crossingPoints) const
 Identify where (extrapolated) clusters plausibly cross in 2D. More...
 
void GetSpacepoints (const pandora::Cluster *const pCluster, pandora::CartesianPointVector &spacePoints) const
 Get a list of spacepoints representing cluster 2D hit positions and extrapolated positions. More...
 
void FindCrossingPoints (const pandora::CartesianPointVector &spacepoints1, const pandora::CartesianPointVector &spacepoints2, pandora::CartesianPointVector &crossingPoints) const
 Identify where (extrapolated) clusters plausibly cross in 2D. More...
 
void CreateCrossingVertices (const pandora::CartesianPointVector &crossingPoints1, const pandora::CartesianPointVector &crossingPoints2, const pandora::HitType hitType1, const pandora::HitType hitType2, unsigned int &nCrossingCandidates) const
 Attempt to create candidate vertex positions, using 2D crossing points in 2 views. More...
 
void AddInputVertices () const
 Add candidate vertices from any input vertices. More...
 
void AddToSlidingFitCache (const pandora::Cluster *const pCluster)
 Creates a 2D sliding fit of a cluster and stores it for later use. More...
 
const TwoDSlidingFitResultGetCachedSlidingFitResult (const pandora::Cluster *const pCluster) const
 Get a sliding fit result from the algorithm cache. More...
 
void TidyUp ()
 Clear relevant algorithm member variables between events. More...
 
pandora::StatusCode ReadSettings (const pandora::TiXmlHandle xmlHandle)
 

Private Attributes

pandora::StringVector m_inputClusterListNames
 The list of cluster list names. More...
 
std::string m_inputVertexListName
 The list name for existing candidate vertices. More...
 
std::string m_outputVertexListName
 The name under which to save the output vertex list. More...
 
bool m_replaceCurrentVertexList
 Whether to replace the current vertex list with the output list. More...
 
unsigned int m_slidingFitWindow
 The layer window for the sliding linear fits. More...
 
TwoDSlidingFitResultMap m_slidingFitResultMap
 The sliding fit result map. More...
 
unsigned int m_minClusterCaloHits
 The min number of hits in base cluster selection method. More...
 
float m_minClusterLengthSquared
 The min length (squared) in base cluster selection method. More...
 
float m_chiSquaredCut
 The chi squared cut (accept only 3D vertex positions with values below cut) More...
 
bool m_enableEndpointCandidates
 Whether to create endpoint-based candidates. More...
 
float m_maxEndpointXDiscrepancy
 The max cluster endpoint discrepancy. More...
 
bool m_enableCrossingCandidates
 Whether to create crossing vertex candidates. More...
 
unsigned int m_nMaxCrossingCandidates
 The max number of crossing candidates to create. More...
 
float m_maxCrossingXDiscrepancy
 The max cluster endpoint discrepancy. More...
 
unsigned int m_extrapolationNSteps
 Number of extrapolation steps, at each end of cluster, of specified size. More...
 
float m_extrapolationStepSize
 The extrapolation step size in cm. More...
 
float m_maxCrossingSeparationSquared
 The separation (squared) between spacepoints below which a crossing can be identified. More...
 
float m_minNearbyCrossingDistanceSquared
 The minimum allowed distance between identified crossing positions. More...
 
bool m_reducedCandidates
 Whether to reduce the number of candidates. More...
 
float m_selectionCutFactorMax
 Maximum factor to multiply the base cluster selection cuts. More...
 
float m_nClustersPassingMaxCutsPar
 Parameter for number of clusters passing the max base cluster selection cuts. More...
 

Detailed Description

CandidateVertexCreationAlgorithm::Algorithm class.

Definition at line 23 of file CandidateVertexCreationAlgorithm.h.

Member Typedef Documentation

typedef std::unordered_map<const pandora::Cluster *, pandora::CartesianPointVector> lar_content::CandidateVertexCreationAlgorithm::ClusterToSpacepointsMap
private

Definition at line 134 of file CandidateVertexCreationAlgorithm.h.

Constructor & Destructor Documentation

lar_content::CandidateVertexCreationAlgorithm::CandidateVertexCreationAlgorithm ( )

Default constructor.

Definition at line 23 of file CandidateVertexCreationAlgorithm.cc.

23  :
28  m_chiSquaredCut(2.f),
38  m_reducedCandidates(false),
41 {
42 }
bool m_reducedCandidates
Whether to reduce the number of candidates.
float m_minClusterLengthSquared
The min length (squared) in base cluster selection method.
float m_extrapolationStepSize
The extrapolation step size in cm.
float m_maxCrossingSeparationSquared
The separation (squared) between spacepoints below which a crossing can be identified.
bool m_enableEndpointCandidates
Whether to create endpoint-based candidates.
bool m_replaceCurrentVertexList
Whether to replace the current vertex list with the output list.
float m_maxEndpointXDiscrepancy
The max cluster endpoint discrepancy.
TFile f
Definition: plotHisto.C:6
bool m_enableCrossingCandidates
Whether to create crossing vertex candidates.
float m_maxCrossingXDiscrepancy
The max cluster endpoint discrepancy.
float m_nClustersPassingMaxCutsPar
Parameter for number of clusters passing the max base cluster selection cuts.
float m_minNearbyCrossingDistanceSquared
The minimum allowed distance between identified crossing positions.
unsigned int m_minClusterCaloHits
The min number of hits in base cluster selection method.
unsigned int m_extrapolationNSteps
Number of extrapolation steps, at each end of cluster, of specified size.
unsigned int m_nMaxCrossingCandidates
The max number of crossing candidates to create.
float m_selectionCutFactorMax
Maximum factor to multiply the base cluster selection cuts.
float m_chiSquaredCut
The chi squared cut (accept only 3D vertex positions with values below cut)
unsigned int m_slidingFitWindow
The layer window for the sliding linear fits.

Member Function Documentation

void lar_content::CandidateVertexCreationAlgorithm::AddInputVertices ( ) const
private

Add candidate vertices from any input vertices.

Definition at line 398 of file CandidateVertexCreationAlgorithm.cc.

References m_inputVertexListName.

Referenced by Run().

399 {
400  const VertexList *pInputVertexList{nullptr};
401  try
402  { // ATTN - No guarantee the list has been initialised, but silent failure here is ok
403  PandoraContentApi::GetList(*this, m_inputVertexListName, pInputVertexList);
404  if (!pInputVertexList)
405  return;
406 
407  for (const Vertex *pInputVertex : *pInputVertexList)
408  {
409  PandoraContentApi::Vertex::Parameters parameters;
410  parameters.m_position = pInputVertex->GetPosition();
411  parameters.m_vertexLabel = VERTEX_INTERACTION;
412  parameters.m_vertexType = VERTEX_3D;
413 
414  const Vertex *pVertex(nullptr);
415  PANDORA_THROW_RESULT_IF(STATUS_CODE_SUCCESS, !=, PandoraContentApi::Vertex::Create(*this, parameters, pVertex));
416  }
417  }
418  catch (const StatusCodeException &)
419  {
420  return;
421  }
422 }
std::string m_inputVertexListName
The list name for existing candidate vertices.
boost::graph_traits< ModuleGraph >::vertex_descriptor Vertex
Definition: ModuleGraph.h:25
std::list< Vertex > VertexList
Definition: DCEL.h:169
void lar_content::CandidateVertexCreationAlgorithm::AddToSlidingFitCache ( const pandora::Cluster *const  pCluster)
private

Creates a 2D sliding fit of a cluster and stores it for later use.

Parameters
pClusteraddress of the relevant cluster

Definition at line 426 of file CandidateVertexCreationAlgorithm.cc.

References lar_content::LArGeometryHelper::GetWireZPitch(), m_slidingFitResultMap, and m_slidingFitWindow.

Referenced by SelectClusters().

427 {
428  const float slidingFitPitch(LArGeometryHelper::GetWireZPitch(this->GetPandora()));
429  const TwoDSlidingFitResult slidingFitResult(pCluster, m_slidingFitWindow, slidingFitPitch);
430 
431  if (!m_slidingFitResultMap.insert(TwoDSlidingFitResultMap::value_type(pCluster, slidingFitResult)).second)
432  throw StatusCodeException(STATUS_CODE_FAILURE);
433 }
static float GetWireZPitch(const pandora::Pandora &pandora, const float maxWirePitchDiscrepancy=0.01)
Return the wire pitch.
TwoDSlidingFitResultMap m_slidingFitResultMap
The sliding fit result map.
unsigned int m_slidingFitWindow
The layer window for the sliding linear fits.
void lar_content::CandidateVertexCreationAlgorithm::CreateCrossingCandidates ( const pandora::ClusterVector &  clusterVectorU,
const pandora::ClusterVector &  clusterVectorV,
const pandora::ClusterVector &  clusterVectorW 
) const
private

Extrapolate 2D clusters, find where they cross, and match crossing points between views to create vertex candidates.

Parameters
clusterVectorUthe clusters in the u view
clusterVectorVthe clusters in the v view
clusterVectorWthe clusters in the w view

Definition at line 251 of file CandidateVertexCreationAlgorithm.cc.

References CreateCrossingVertices(), FindCrossingPoints(), and GetSpacepoints().

Referenced by Run().

253 {
254  CartesianPointVector crossingsU, crossingsV, crossingsW;
255  this->FindCrossingPoints(clusterVectorU, crossingsU);
256  this->FindCrossingPoints(clusterVectorV, crossingsV);
257  this->FindCrossingPoints(clusterVectorW, crossingsW);
258 
259  unsigned int nCrossingCandidates(0);
260  this->CreateCrossingVertices(crossingsU, crossingsV, TPC_VIEW_U, TPC_VIEW_V, nCrossingCandidates);
261  this->CreateCrossingVertices(crossingsU, crossingsW, TPC_VIEW_U, TPC_VIEW_W, nCrossingCandidates);
262  this->CreateCrossingVertices(crossingsV, crossingsW, TPC_VIEW_V, TPC_VIEW_W, nCrossingCandidates);
263 }
void FindCrossingPoints(const pandora::ClusterVector &clusterVector, pandora::CartesianPointVector &crossingPoints) const
Identify where (extrapolated) clusters plausibly cross in 2D.
void CreateCrossingVertices(const pandora::CartesianPointVector &crossingPoints1, const pandora::CartesianPointVector &crossingPoints2, const pandora::HitType hitType1, const pandora::HitType hitType2, unsigned int &nCrossingCandidates) const
Attempt to create candidate vertex positions, using 2D crossing points in 2 views.
void lar_content::CandidateVertexCreationAlgorithm::CreateCrossingVertices ( const pandora::CartesianPointVector &  crossingPoints1,
const pandora::CartesianPointVector &  crossingPoints2,
const pandora::HitType  hitType1,
const pandora::HitType  hitType2,
unsigned int &  nCrossingCandidates 
) const
private

Attempt to create candidate vertex positions, using 2D crossing points in 2 views.

Parameters
crossingPoints1the crossing points in view 1
crossingPoints2the crossing points in view 2
hitType1the hit type of crossing points 1
hitType2the hit type of crossing points 2
nCrossingCandidatesto count the number of crossing candidates created

Definition at line 363 of file CandidateVertexCreationAlgorithm.cc.

References f, m_chiSquaredCut, m_maxCrossingXDiscrepancy, m_nMaxCrossingCandidates, and lar_content::LArGeometryHelper::MergeTwoPositions3D().

Referenced by CreateCrossingCandidates().

365 {
366 
367  for (const CartesianVector &position1 : crossingPoints1)
368  {
369  for (const CartesianVector &position2 : crossingPoints2)
370  {
371  if (nCrossingCandidates > m_nMaxCrossingCandidates)
372  return;
373 
374  if (std::fabs(position1.GetX() - position2.GetX()) > m_maxCrossingXDiscrepancy)
375  continue;
376 
377  float chiSquared(0.f);
378  CartesianVector position3D(0.f, 0.f, 0.f);
379  LArGeometryHelper::MergeTwoPositions3D(this->GetPandora(), hitType1, hitType2, position1, position2, position3D, chiSquared);
380 
381  if (chiSquared > m_chiSquaredCut)
382  continue;
383 
384  PandoraContentApi::Vertex::Parameters parameters;
385  parameters.m_position = position3D;
386  parameters.m_vertexLabel = VERTEX_INTERACTION;
387  parameters.m_vertexType = VERTEX_3D;
388 
389  const Vertex *pVertex(NULL);
390  PANDORA_THROW_RESULT_IF(STATUS_CODE_SUCCESS, !=, PandoraContentApi::Vertex::Create(*this, parameters, pVertex));
391  ++nCrossingCandidates;
392  }
393  }
394 }
static void MergeTwoPositions3D(const pandora::Pandora &pandora, const pandora::HitType view1, const pandora::HitType view2, const pandora::CartesianVector &position1, const pandora::CartesianVector &position2, pandora::CartesianVector &position3D, float &chiSquared)
Merge 2D positions from two views to give unified 3D position.
TFile f
Definition: plotHisto.C:6
float m_maxCrossingXDiscrepancy
The max cluster endpoint discrepancy.
unsigned int m_nMaxCrossingCandidates
The max number of crossing candidates to create.
float m_chiSquaredCut
The chi squared cut (accept only 3D vertex positions with values below cut)
boost::graph_traits< ModuleGraph >::vertex_descriptor Vertex
Definition: ModuleGraph.h:25
void lar_content::CandidateVertexCreationAlgorithm::CreateEndpointCandidates ( const pandora::ClusterVector &  clusterVector1,
const pandora::ClusterVector &  clusterVector2 
) const
private

Create candidate vertex positions by comparing pairs of cluster end positions.

Parameters
clusterVector1the clusters in view 1
clusterVector1the clusters in view 2

Definition at line 185 of file CandidateVertexCreationAlgorithm.cc.

References CreateEndpointVertex(), GetCachedSlidingFitResult(), lar_content::LArClusterHelper::GetClusterHitType(), lar_content::TwoDSlidingFitResult::GetGlobalMaxLayerPosition(), and lar_content::TwoDSlidingFitResult::GetGlobalMinLayerPosition().

Referenced by Run().

186 {
187  for (const Cluster *const pCluster1 : clusterVector1)
188  {
189  const HitType hitType1(LArClusterHelper::GetClusterHitType(pCluster1));
190 
191  const TwoDSlidingFitResult &fitResult1(this->GetCachedSlidingFitResult(pCluster1));
192  const CartesianVector minLayerPosition1(fitResult1.GetGlobalMinLayerPosition());
193  const CartesianVector maxLayerPosition1(fitResult1.GetGlobalMaxLayerPosition());
194 
195  for (const Cluster *const pCluster2 : clusterVector2)
196  {
197  const HitType hitType2(LArClusterHelper::GetClusterHitType(pCluster2));
198 
199  const TwoDSlidingFitResult &fitResult2(this->GetCachedSlidingFitResult(pCluster2));
200  const CartesianVector minLayerPosition2(fitResult2.GetGlobalMinLayerPosition());
201  const CartesianVector maxLayerPosition2(fitResult2.GetGlobalMaxLayerPosition());
202 
203  this->CreateEndpointVertex(maxLayerPosition1, hitType1, fitResult2);
204  this->CreateEndpointVertex(minLayerPosition1, hitType1, fitResult2);
205  this->CreateEndpointVertex(maxLayerPosition2, hitType2, fitResult1);
206  this->CreateEndpointVertex(minLayerPosition2, hitType2, fitResult1);
207  }
208  }
209 }
void CreateEndpointVertex(const pandora::CartesianVector &position1, const pandora::HitType hitType1, const TwoDSlidingFitResult &fitResult2) const
Create a candidate vertex position, using an end-point position from one cluster and sliding fit to a...
static pandora::HitType GetClusterHitType(const pandora::Cluster *const pCluster)
Get the hit type associated with a two dimensional cluster.
const TwoDSlidingFitResult & GetCachedSlidingFitResult(const pandora::Cluster *const pCluster) const
Get a sliding fit result from the algorithm cache.
HitType
Definition: HitType.h:12
void lar_content::CandidateVertexCreationAlgorithm::CreateEndpointVertex ( const pandora::CartesianVector &  position1,
const pandora::HitType  hitType1,
const TwoDSlidingFitResult fitResult2 
) const
private

Create a candidate vertex position, using an end-point position from one cluster and sliding fit to a second cluster.

Parameters
position1an end-point position for the first cluster
hitType1the hit type of the first cluster
fitResult2the two dimensional sliding fit result for the second cluster

Definition at line 213 of file CandidateVertexCreationAlgorithm.cc.

References f, lar_content::TwoDSlidingFitResult::GetCluster(), lar_content::LArClusterHelper::GetClusterHitType(), lar_content::TwoDSlidingFitResult::GetExtrapolatedPositionAtX(), lar_content::TwoDSlidingFitResult::GetGlobalMaxLayerPosition(), lar_content::TwoDSlidingFitResult::GetGlobalMinLayerPosition(), m_chiSquaredCut, m_maxEndpointXDiscrepancy, and lar_content::LArGeometryHelper::MergeTwoPositions3D().

Referenced by CreateEndpointCandidates().

215 {
216  const CartesianVector minLayerPosition2(fitResult2.GetGlobalMinLayerPosition());
217  const CartesianVector maxLayerPosition2(fitResult2.GetGlobalMaxLayerPosition());
218 
219  if ((((position1.GetX() < minLayerPosition2.GetX()) && (position1.GetX() < maxLayerPosition2.GetX())) ||
220  ((position1.GetX() > minLayerPosition2.GetX()) && (position1.GetX() > maxLayerPosition2.GetX()))) &&
221  (std::fabs(position1.GetX() - minLayerPosition2.GetX()) > m_maxEndpointXDiscrepancy) &&
222  (std::fabs(position1.GetX() - maxLayerPosition2.GetX()) > m_maxEndpointXDiscrepancy))
223  {
224  return;
225  }
226 
227  CartesianVector position2(0.f, 0.f, 0.f);
228  if (STATUS_CODE_SUCCESS != fitResult2.GetExtrapolatedPositionAtX(position1.GetX(), position2))
229  return;
230 
231  const HitType hitType2(LArClusterHelper::GetClusterHitType(fitResult2.GetCluster()));
232 
233  float chiSquared(0.f);
234  CartesianVector position3D(0.f, 0.f, 0.f);
235  LArGeometryHelper::MergeTwoPositions3D(this->GetPandora(), hitType1, hitType2, position1, position2, position3D, chiSquared);
236 
237  if (chiSquared > m_chiSquaredCut)
238  return;
239 
240  PandoraContentApi::Vertex::Parameters parameters;
241  parameters.m_position = position3D;
242  parameters.m_vertexLabel = VERTEX_INTERACTION;
243  parameters.m_vertexType = VERTEX_3D;
244 
245  const Vertex *pVertex(NULL);
246  PANDORA_THROW_RESULT_IF(STATUS_CODE_SUCCESS, !=, PandoraContentApi::Vertex::Create(*this, parameters, pVertex));
247 }
static void MergeTwoPositions3D(const pandora::Pandora &pandora, const pandora::HitType view1, const pandora::HitType view2, const pandora::CartesianVector &position1, const pandora::CartesianVector &position2, pandora::CartesianVector &position3D, float &chiSquared)
Merge 2D positions from two views to give unified 3D position.
float m_maxEndpointXDiscrepancy
The max cluster endpoint discrepancy.
static pandora::HitType GetClusterHitType(const pandora::Cluster *const pCluster)
Get the hit type associated with a two dimensional cluster.
TFile f
Definition: plotHisto.C:6
HitType
Definition: HitType.h:12
float m_chiSquaredCut
The chi squared cut (accept only 3D vertex positions with values below cut)
boost::graph_traits< ModuleGraph >::vertex_descriptor Vertex
Definition: ModuleGraph.h:25
void lar_content::CandidateVertexCreationAlgorithm::FindCrossingPoints ( const pandora::ClusterVector &  clusterVector,
pandora::CartesianPointVector &  crossingPoints 
) const
private

Identify where (extrapolated) clusters plausibly cross in 2D.

Parameters
clusterVectorthe input clusters
crossingPointsto receive the 2D crossing points

Referenced by CreateCrossingCandidates(), and GetSpacepoints().

void lar_content::CandidateVertexCreationAlgorithm::FindCrossingPoints ( const pandora::CartesianPointVector &  spacepoints1,
const pandora::CartesianPointVector &  spacepoints2,
pandora::CartesianPointVector &  crossingPoints 
) const
private

Identify where (extrapolated) clusters plausibly cross in 2D.

Parameters
spacepoints1space points for cluster 1
spacepoints2space points for cluster 2
crossingPointsto receive the list of plausible 2D crossing points
const TwoDSlidingFitResult & lar_content::CandidateVertexCreationAlgorithm::GetCachedSlidingFitResult ( const pandora::Cluster *const  pCluster) const
private

Get a sliding fit result from the algorithm cache.

Parameters
pClusteraddress of the relevant cluster

Definition at line 437 of file CandidateVertexCreationAlgorithm.cc.

References m_slidingFitResultMap.

Referenced by CreateEndpointCandidates(), and GetSpacepoints().

438 {
440 
441  if (m_slidingFitResultMap.end() == iter)
442  throw StatusCodeException(STATUS_CODE_NOT_FOUND);
443 
444  return iter->second;
445 }
intermediate_table::const_iterator const_iterator
TwoDSlidingFitResultMap m_slidingFitResultMap
The sliding fit result map.
void lar_content::CandidateVertexCreationAlgorithm::GetSpacepoints ( const pandora::Cluster *const  pCluster,
pandora::CartesianPointVector &  spacePoints 
) const
private

Get a list of spacepoints representing cluster 2D hit positions and extrapolated positions.

Parameters
pClusteraddress of the cluster
spacePointsto receive the list of spacepoints

Definition at line 291 of file CandidateVertexCreationAlgorithm.cc.

References f, FindCrossingPoints(), GetCachedSlidingFitResult(), lar_content::LArClusterHelper::GetCoordinateVector(), lar_content::TwoDSlidingFitResult::GetExtrapolatedPosition(), lar_content::TwoDSlidingFitResult::GetL(), lar_content::TwoDSlidingFitResult::GetMaxLayer(), lar_content::TwoDSlidingFitResult::GetMinLayer(), m_extrapolationNSteps, m_extrapolationStepSize, m_maxCrossingSeparationSquared, m_minNearbyCrossingDistanceSquared, and lar_content::LArClusterHelper::SortCoordinatesByPosition().

Referenced by CreateCrossingCandidates().

292 {
293  LArClusterHelper::GetCoordinateVector(pCluster, spacepoints);
294 
295  const TwoDSlidingFitResult &fitResult(this->GetCachedSlidingFitResult(pCluster));
296  const float minLayerRL(fitResult.GetL(fitResult.GetMinLayer()));
297  const float maxLayerRL(fitResult.GetL(fitResult.GetMaxLayer()));
298 
299  for (unsigned int iStep = 0; iStep < m_extrapolationNSteps; ++iStep)
300  {
301  const float deltaRL(static_cast<float>(iStep) * m_extrapolationStepSize);
302 
303  CartesianVector positionPositive(0.f, 0.f, 0.f), positionNegative(0.f, 0.f, 0.f);
304  fitResult.GetExtrapolatedPosition(maxLayerRL + deltaRL, positionPositive);
305  fitResult.GetExtrapolatedPosition(minLayerRL - deltaRL, positionNegative);
306 
307  spacepoints.push_back(positionPositive);
308  spacepoints.push_back(positionNegative);
309  }
310 
311  std::sort(spacepoints.begin(), spacepoints.end(), LArClusterHelper::SortCoordinatesByPosition);
312 }
float m_extrapolationStepSize
The extrapolation step size in cm.
TFile f
Definition: plotHisto.C:6
static bool SortCoordinatesByPosition(const pandora::CartesianVector &lhs, const pandora::CartesianVector &rhs)
Sort cartesian vectors by their position (use Z, followed by X, followed by Y)
unsigned int m_extrapolationNSteps
Number of extrapolation steps, at each end of cluster, of specified size.
const TwoDSlidingFitResult & GetCachedSlidingFitResult(const pandora::Cluster *const pCluster) const
Get a sliding fit result from the algorithm cache.
static void GetCoordinateVector(const pandora::Cluster *const pCluster, pandora::CartesianPointVector &coordinateVector)
Get vector of hit coordinates from an input cluster.
StatusCode lar_content::CandidateVertexCreationAlgorithm::ReadSettings ( const pandora::TiXmlHandle  xmlHandle)
private

Definition at line 456 of file CandidateVertexCreationAlgorithm.cc.

References m_chiSquaredCut, m_enableCrossingCandidates, m_enableEndpointCandidates, m_extrapolationNSteps, m_extrapolationStepSize, m_inputClusterListNames, m_inputVertexListName, m_maxCrossingSeparationSquared, m_maxCrossingXDiscrepancy, m_maxEndpointXDiscrepancy, m_minClusterCaloHits, m_minClusterLengthSquared, m_minNearbyCrossingDistanceSquared, m_nClustersPassingMaxCutsPar, m_nMaxCrossingCandidates, m_outputVertexListName, m_reducedCandidates, m_replaceCurrentVertexList, m_selectionCutFactorMax, and m_slidingFitWindow.

457 {
458  PANDORA_RETURN_RESULT_IF(STATUS_CODE_SUCCESS, !=, XmlHelper::ReadVectorOfValues(xmlHandle, "InputClusterListNames", m_inputClusterListNames));
459 
460  PANDORA_RETURN_RESULT_IF_AND_IF(
461  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "InputVertexListName", m_inputVertexListName));
462 
463  PANDORA_RETURN_RESULT_IF(STATUS_CODE_SUCCESS, !=, XmlHelper::ReadValue(xmlHandle, "OutputVertexListName", m_outputVertexListName));
464 
465  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=,
466  XmlHelper::ReadValue(xmlHandle, "ReplaceCurrentVertexList", m_replaceCurrentVertexList));
467 
468  PANDORA_RETURN_RESULT_IF_AND_IF(
469  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "SlidingFitWindow", m_slidingFitWindow));
470 
471  PANDORA_RETURN_RESULT_IF_AND_IF(
472  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "MinClusterCaloHits", m_minClusterCaloHits));
473 
474  float minClusterLength = std::sqrt(m_minClusterLengthSquared);
475  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "MinClusterLength", minClusterLength));
476  m_minClusterLengthSquared = minClusterLength * minClusterLength;
477 
478  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "ChiSquaredCut", m_chiSquaredCut));
479 
480  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=,
481  XmlHelper::ReadValue(xmlHandle, "EnableEndpointCandidates", m_enableEndpointCandidates));
482 
483  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=,
484  XmlHelper::ReadValue(xmlHandle, "MaxEndpointXDiscrepancy", m_maxEndpointXDiscrepancy));
485 
486  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=,
487  XmlHelper::ReadValue(xmlHandle, "EnableCrossingCandidates", m_enableCrossingCandidates));
488 
489  PANDORA_RETURN_RESULT_IF_AND_IF(
490  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "NMaxCrossingCandidates", m_nMaxCrossingCandidates));
491 
492  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=,
493  XmlHelper::ReadValue(xmlHandle, "MaxCrossingXDiscrepancy", m_maxCrossingXDiscrepancy));
494 
495  PANDORA_RETURN_RESULT_IF_AND_IF(
496  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "ExtrapolationNSteps", m_extrapolationNSteps));
497 
498  PANDORA_RETURN_RESULT_IF_AND_IF(
499  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "ExtrapolationStepSize", m_extrapolationStepSize));
500 
501  PANDORA_RETURN_RESULT_IF_AND_IF(
502  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "ReducedCandidates", m_reducedCandidates));
503 
504  PANDORA_RETURN_RESULT_IF_AND_IF(
505  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "SelectionCutFactorMax", m_selectionCutFactorMax));
506 
507  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=,
508  XmlHelper::ReadValue(xmlHandle, "NClustersPassingMaxCutsPar", m_nClustersPassingMaxCutsPar));
509 
510  float maxCrossingSeparation = std::sqrt(m_maxCrossingSeparationSquared);
511  PANDORA_RETURN_RESULT_IF_AND_IF(
512  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=, XmlHelper::ReadValue(xmlHandle, "MaxCrossingSeparation", maxCrossingSeparation));
513  m_maxCrossingSeparationSquared = maxCrossingSeparation * maxCrossingSeparation;
514 
515  float minNearbyCrossingDistance = std::sqrt(m_minNearbyCrossingDistanceSquared);
516  PANDORA_RETURN_RESULT_IF_AND_IF(STATUS_CODE_SUCCESS, STATUS_CODE_NOT_FOUND, !=,
517  XmlHelper::ReadValue(xmlHandle, "MinNearbyCrossingDistance", minNearbyCrossingDistance));
518  m_minNearbyCrossingDistanceSquared = minNearbyCrossingDistance * minNearbyCrossingDistance;
519 
520  return STATUS_CODE_SUCCESS;
521 }
bool m_reducedCandidates
Whether to reduce the number of candidates.
float m_minClusterLengthSquared
The min length (squared) in base cluster selection method.
float m_extrapolationStepSize
The extrapolation step size in cm.
float m_maxCrossingSeparationSquared
The separation (squared) between spacepoints below which a crossing can be identified.
bool m_enableEndpointCandidates
Whether to create endpoint-based candidates.
bool m_replaceCurrentVertexList
Whether to replace the current vertex list with the output list.
float m_maxEndpointXDiscrepancy
The max cluster endpoint discrepancy.
std::string m_inputVertexListName
The list name for existing candidate vertices.
bool m_enableCrossingCandidates
Whether to create crossing vertex candidates.
float m_maxCrossingXDiscrepancy
The max cluster endpoint discrepancy.
float m_nClustersPassingMaxCutsPar
Parameter for number of clusters passing the max base cluster selection cuts.
float m_minNearbyCrossingDistanceSquared
The minimum allowed distance between identified crossing positions.
unsigned int m_minClusterCaloHits
The min number of hits in base cluster selection method.
unsigned int m_extrapolationNSteps
Number of extrapolation steps, at each end of cluster, of specified size.
std::string m_outputVertexListName
The name under which to save the output vertex list.
pandora::StringVector m_inputClusterListNames
The list of cluster list names.
unsigned int m_nMaxCrossingCandidates
The max number of crossing candidates to create.
float m_selectionCutFactorMax
Maximum factor to multiply the base cluster selection cuts.
float m_chiSquaredCut
The chi squared cut (accept only 3D vertex positions with values below cut)
unsigned int m_slidingFitWindow
The layer window for the sliding linear fits.
StatusCode lar_content::CandidateVertexCreationAlgorithm::Run ( )
private

Definition at line 46 of file CandidateVertexCreationAlgorithm.cc.

References AddInputVertices(), CreateCrossingCandidates(), CreateEndpointCandidates(), m_enableCrossingCandidates, m_enableEndpointCandidates, m_inputVertexListName, m_outputVertexListName, m_replaceCurrentVertexList, SelectClusters(), and TidyUp().

47 {
48  try
49  {
50  // INFO: See if there is already a vertex, and quit early if there is.
51  // The vertex has likely already been defined by another algorithm.
52  const VertexList *pVertexList(nullptr);
53  PandoraContentApi::GetCurrentList(*this, pVertexList);
54  if (pVertexList != nullptr && !pVertexList->empty())
55  {
56  if (PandoraContentApi::GetSettings(*this)->ShouldDisplayAlgorithmInfo())
57  std::cout << "CandidateVertexCreationAlgorithm: Vertex already defined, skipping" << std::endl;
58 
59  return STATUS_CODE_SUCCESS;
60  }
61 
62  ClusterVector clusterVectorU, clusterVectorV, clusterVectorW;
63  this->SelectClusters(clusterVectorU, clusterVectorV, clusterVectorW);
64 
65  std::string temporaryListName;
66  PANDORA_RETURN_RESULT_IF(STATUS_CODE_SUCCESS, !=, PandoraContentApi::CreateTemporaryListAndSetCurrent(*this, pVertexList, temporaryListName));
67 
69  {
70  this->CreateEndpointCandidates(clusterVectorU, clusterVectorV);
71  this->CreateEndpointCandidates(clusterVectorU, clusterVectorW);
72  this->CreateEndpointCandidates(clusterVectorV, clusterVectorW);
73  }
74 
76  this->CreateCrossingCandidates(clusterVectorU, clusterVectorV, clusterVectorW);
77 
78  if (!m_inputVertexListName.empty())
79  this->AddInputVertices();
80 
81  if (!pVertexList->empty())
82  {
83  PANDORA_RETURN_RESULT_IF(STATUS_CODE_SUCCESS, !=, PandoraContentApi::SaveList<Vertex>(*this, m_outputVertexListName));
84 
86  PANDORA_RETURN_RESULT_IF(STATUS_CODE_SUCCESS, !=, PandoraContentApi::ReplaceCurrentList<Vertex>(*this, m_outputVertexListName));
87  }
88  }
89  catch (StatusCodeException &statusCodeException)
90  {
91  this->TidyUp();
92  throw statusCodeException;
93  }
94 
95  this->TidyUp();
96 
97  return STATUS_CODE_SUCCESS;
98 }
void CreateCrossingCandidates(const pandora::ClusterVector &clusterVectorU, const pandora::ClusterVector &clusterVectorV, const pandora::ClusterVector &clusterVectorW) const
Extrapolate 2D clusters, find where they cross, and match crossing points between views to create ver...
bool m_enableEndpointCandidates
Whether to create endpoint-based candidates.
bool m_replaceCurrentVertexList
Whether to replace the current vertex list with the output list.
std::string m_inputVertexListName
The list name for existing candidate vertices.
bool m_enableCrossingCandidates
Whether to create crossing vertex candidates.
void CreateEndpointCandidates(const pandora::ClusterVector &clusterVector1, const pandora::ClusterVector &clusterVector2) const
Create candidate vertex positions by comparing pairs of cluster end positions.
void TidyUp()
Clear relevant algorithm member variables between events.
std::string m_outputVertexListName
The name under which to save the output vertex list.
void SelectClusters(pandora::ClusterVector &clusterVectorU, pandora::ClusterVector &clusterVectorV, pandora::ClusterVector &clusterVectorW)
Select a subset of input clusters (contained in the input list names) for processing in this algorith...
std::vector< art::Ptr< recob::Cluster > > ClusterVector
void AddInputVertices() const
Add candidate vertices from any input vertices.
std::list< Vertex > VertexList
Definition: DCEL.h:169
void lar_content::CandidateVertexCreationAlgorithm::SelectClusters ( pandora::ClusterVector &  clusterVectorU,
pandora::ClusterVector &  clusterVectorV,
pandora::ClusterVector &  clusterVectorW 
)
private

Select a subset of input clusters (contained in the input list names) for processing in this algorithm.

Parameters
clusterVectorUto receive the selected clusters in the u view
clusterVectorVto receive the selected clusters in the v view
clusterVectorWto receive the selected clusters in the w view

Definition at line 102 of file CandidateVertexCreationAlgorithm.cc.

References AddToSlidingFitCache(), f, lar_content::LArClusterHelper::GetClusterHitType(), lar_content::LArClusterHelper::GetLengthSquared(), m_inputClusterListNames, m_minClusterCaloHits, m_minClusterLengthSquared, m_nClustersPassingMaxCutsPar, m_reducedCandidates, m_selectionCutFactorMax, and lar_content::LArClusterHelper::SortByNHits().

Referenced by Run().

103 {
104  for (const std::string &clusterListName : m_inputClusterListNames)
105  {
106  const ClusterList *pClusterList(NULL);
107  PANDORA_THROW_RESULT_IF_AND_IF(
108  STATUS_CODE_SUCCESS, STATUS_CODE_NOT_INITIALIZED, !=, PandoraContentApi::GetList(*this, clusterListName, pClusterList));
109 
110  if (!pClusterList || pClusterList->empty())
111  {
112  if (PandoraContentApi::GetSettings(*this)->ShouldDisplayAlgorithmInfo())
113  std::cout << "CandidateVertexCreationAlgorithm: unable to find cluster list " << clusterListName << std::endl;
114 
115  continue;
116  }
117 
118  const HitType hitType(LArClusterHelper::GetClusterHitType(*(pClusterList->begin())));
119 
120  if ((TPC_VIEW_U != hitType) && (TPC_VIEW_V != hitType) && (TPC_VIEW_W != hitType))
121  throw StatusCodeException(STATUS_CODE_INVALID_PARAMETER);
122 
123  ClusterVector &selectedClusterVector((TPC_VIEW_U == hitType) ? clusterVectorU
124  : (TPC_VIEW_V == hitType) ? clusterVectorV
125  : clusterVectorW);
126 
127  if (!selectedClusterVector.empty())
128  throw StatusCodeException(STATUS_CODE_FAILURE);
129 
130  ClusterVector sortedClusters(pClusterList->begin(), pClusterList->end());
131  std::sort(sortedClusters.begin(), sortedClusters.end(), LArClusterHelper::SortByNHits);
132 
133  unsigned int nClustersPassingMaxCuts(0);
135  {
136  for (const Cluster *const pCluster : sortedClusters)
137  {
138  float selectionCutFactor(1.f);
139 
140  if (pCluster->GetParticleId() == E_MINUS)
141  selectionCutFactor = m_selectionCutFactorMax;
142 
143  if (pCluster->GetNCaloHits() < m_minClusterCaloHits * selectionCutFactor)
144  continue;
145 
146  if (LArClusterHelper::GetLengthSquared(pCluster) < m_minClusterLengthSquared * selectionCutFactor * selectionCutFactor)
147  continue;
148 
149  nClustersPassingMaxCuts++;
150  }
151  }
152 
153  for (const Cluster *const pCluster : sortedClusters)
154  {
155  float selectionCutFactor(1.f);
156 
157  if (pCluster->GetParticleId() == E_MINUS && m_reducedCandidates)
158  {
159  selectionCutFactor = (m_selectionCutFactorMax + 1.f) * 0.5f +
160  (m_selectionCutFactorMax - 1.f) * 0.5f * std::tanh(static_cast<float>(nClustersPassingMaxCuts) - m_nClustersPassingMaxCutsPar);
161  }
162 
163  if (pCluster->GetNCaloHits() < m_minClusterCaloHits * selectionCutFactor)
164  continue;
165 
166  if (LArClusterHelper::GetLengthSquared(pCluster) < m_minClusterLengthSquared * selectionCutFactor * selectionCutFactor)
167  continue;
168 
169  try
170  {
171  this->AddToSlidingFitCache(pCluster);
172  selectedClusterVector.push_back(pCluster);
173  }
174  catch (StatusCodeException &statusCodeException)
175  {
176  if (STATUS_CODE_FAILURE == statusCodeException.GetStatusCode())
177  throw statusCodeException;
178  }
179  }
180  }
181 }
bool m_reducedCandidates
Whether to reduce the number of candidates.
static bool SortByNHits(const pandora::Cluster *const pLhs, const pandora::Cluster *const pRhs)
Sort clusters by number of hits, then layer span, then inner layer, then position, then pulse-height.
float m_minClusterLengthSquared
The min length (squared) in base cluster selection method.
void AddToSlidingFitCache(const pandora::Cluster *const pCluster)
Creates a 2D sliding fit of a cluster and stores it for later use.
static pandora::HitType GetClusterHitType(const pandora::Cluster *const pCluster)
Get the hit type associated with a two dimensional cluster.
TFile f
Definition: plotHisto.C:6
float m_nClustersPassingMaxCutsPar
Parameter for number of clusters passing the max base cluster selection cuts.
unsigned int m_minClusterCaloHits
The min number of hits in base cluster selection method.
pandora::StringVector m_inputClusterListNames
The list of cluster list names.
float m_selectionCutFactorMax
Maximum factor to multiply the base cluster selection cuts.
HitType
Definition: HitType.h:12
static float GetLengthSquared(const pandora::Cluster *const pCluster)
Get length squared of cluster.
std::vector< art::Ptr< recob::Cluster > > ClusterVector
void lar_content::CandidateVertexCreationAlgorithm::TidyUp ( )
private

Clear relevant algorithm member variables between events.

Definition at line 449 of file CandidateVertexCreationAlgorithm.cc.

References m_slidingFitResultMap.

Referenced by Run().

450 {
451  m_slidingFitResultMap.clear();
452 }
TwoDSlidingFitResultMap m_slidingFitResultMap
The sliding fit result map.

Member Data Documentation

float lar_content::CandidateVertexCreationAlgorithm::m_chiSquaredCut
private

The chi squared cut (accept only 3D vertex positions with values below cut)

Definition at line 146 of file CandidateVertexCreationAlgorithm.h.

Referenced by CreateCrossingVertices(), CreateEndpointVertex(), and ReadSettings().

bool lar_content::CandidateVertexCreationAlgorithm::m_enableCrossingCandidates
private

Whether to create crossing vertex candidates.

Definition at line 151 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and Run().

bool lar_content::CandidateVertexCreationAlgorithm::m_enableEndpointCandidates
private

Whether to create endpoint-based candidates.

Definition at line 148 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and Run().

unsigned int lar_content::CandidateVertexCreationAlgorithm::m_extrapolationNSteps
private

Number of extrapolation steps, at each end of cluster, of specified size.

Definition at line 154 of file CandidateVertexCreationAlgorithm.h.

Referenced by GetSpacepoints(), and ReadSettings().

float lar_content::CandidateVertexCreationAlgorithm::m_extrapolationStepSize
private

The extrapolation step size in cm.

Definition at line 155 of file CandidateVertexCreationAlgorithm.h.

Referenced by GetSpacepoints(), and ReadSettings().

pandora::StringVector lar_content::CandidateVertexCreationAlgorithm::m_inputClusterListNames
private

The list of cluster list names.

Definition at line 136 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and SelectClusters().

std::string lar_content::CandidateVertexCreationAlgorithm::m_inputVertexListName
private

The list name for existing candidate vertices.

Definition at line 137 of file CandidateVertexCreationAlgorithm.h.

Referenced by AddInputVertices(), ReadSettings(), and Run().

float lar_content::CandidateVertexCreationAlgorithm::m_maxCrossingSeparationSquared
private

The separation (squared) between spacepoints below which a crossing can be identified.

Definition at line 156 of file CandidateVertexCreationAlgorithm.h.

Referenced by GetSpacepoints(), and ReadSettings().

float lar_content::CandidateVertexCreationAlgorithm::m_maxCrossingXDiscrepancy
private

The max cluster endpoint discrepancy.

Definition at line 153 of file CandidateVertexCreationAlgorithm.h.

Referenced by CreateCrossingVertices(), and ReadSettings().

float lar_content::CandidateVertexCreationAlgorithm::m_maxEndpointXDiscrepancy
private

The max cluster endpoint discrepancy.

Definition at line 149 of file CandidateVertexCreationAlgorithm.h.

Referenced by CreateEndpointVertex(), and ReadSettings().

unsigned int lar_content::CandidateVertexCreationAlgorithm::m_minClusterCaloHits
private

The min number of hits in base cluster selection method.

Definition at line 144 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and SelectClusters().

float lar_content::CandidateVertexCreationAlgorithm::m_minClusterLengthSquared
private

The min length (squared) in base cluster selection method.

Definition at line 145 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and SelectClusters().

float lar_content::CandidateVertexCreationAlgorithm::m_minNearbyCrossingDistanceSquared
private

The minimum allowed distance between identified crossing positions.

Definition at line 157 of file CandidateVertexCreationAlgorithm.h.

Referenced by GetSpacepoints(), and ReadSettings().

float lar_content::CandidateVertexCreationAlgorithm::m_nClustersPassingMaxCutsPar
private

Parameter for number of clusters passing the max base cluster selection cuts.

Definition at line 161 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and SelectClusters().

unsigned int lar_content::CandidateVertexCreationAlgorithm::m_nMaxCrossingCandidates
private

The max number of crossing candidates to create.

Definition at line 152 of file CandidateVertexCreationAlgorithm.h.

Referenced by CreateCrossingVertices(), and ReadSettings().

std::string lar_content::CandidateVertexCreationAlgorithm::m_outputVertexListName
private

The name under which to save the output vertex list.

Definition at line 138 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and Run().

bool lar_content::CandidateVertexCreationAlgorithm::m_reducedCandidates
private

Whether to reduce the number of candidates.

Definition at line 159 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and SelectClusters().

bool lar_content::CandidateVertexCreationAlgorithm::m_replaceCurrentVertexList
private

Whether to replace the current vertex list with the output list.

Definition at line 139 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and Run().

float lar_content::CandidateVertexCreationAlgorithm::m_selectionCutFactorMax
private

Maximum factor to multiply the base cluster selection cuts.

Definition at line 160 of file CandidateVertexCreationAlgorithm.h.

Referenced by ReadSettings(), and SelectClusters().

TwoDSlidingFitResultMap lar_content::CandidateVertexCreationAlgorithm::m_slidingFitResultMap
private

The sliding fit result map.

Definition at line 142 of file CandidateVertexCreationAlgorithm.h.

Referenced by AddToSlidingFitCache(), GetCachedSlidingFitResult(), and TidyUp().

unsigned int lar_content::CandidateVertexCreationAlgorithm::m_slidingFitWindow
private

The layer window for the sliding linear fits.

Definition at line 141 of file CandidateVertexCreationAlgorithm.h.

Referenced by AddToSlidingFitCache(), and ReadSettings().


The documentation for this class was generated from the following files: