LArSoft  v10_04_05
Liquid Argon Software toolkit - https://larsoft.org/
VertexFinder2D_module.cc
Go to the documentation of this file.
1 //
3 // VertexFinder2D class
4 //
5 // tjyang@fnal.gov
6 //
7 // This algorithm is designed to reconstruct the vertices using the
8 // 2D cluster information
9 //
10 // This is Preliminary Work and needs modifications
11 // ////////////////////////////////////////////////////////////////////////
12 
13 // Framework includes
19 #include "art_root_io/TFileService.h"
23 #include "fhiclcpp/ParameterSet.h"
25 
38 
39 #include "TF1.h"
40 #include "TGraph.h"
41 #include "TH1D.h"
42 #include "TMath.h"
43 
44 #include <algorithm>
45 #include <cmath>
46 #include <iomanip>
47 #include <string>
48 
49 namespace {
50  struct CluLen {
51  int index;
52  float length;
53  };
54 
55  bool myfunction(CluLen c1, CluLen c2)
56  {
57  return (c1.length > c2.length);
58  }
59 
60  struct SortByWire {
61  bool operator()(art::Ptr<recob::Hit> const& h1, art::Ptr<recob::Hit> const& h2) const
62  {
63  return h1->Channel() < h2->Channel();
64  }
65  };
66 }
67 
69 namespace vertex {
70 
72  public:
73  explicit VertexFinder2D(fhicl::ParameterSet const& pset);
74 
75  private:
76  void beginJob() override;
77  void produce(art::Event& evt) override;
78 
79  TH1D* dtIC;
80 
81  std::string fClusterModuleLabel;
82  };
83 
84 }
85 
86 namespace vertex {
87 
88  //-----------------------------------------------------------------------------
89  VertexFinder2D::VertexFinder2D(fhicl::ParameterSet const& pset) : EDProducer{pset}
90  {
91  fClusterModuleLabel = pset.get<std::string>("ClusterModuleLabel");
92  produces<std::vector<recob::Vertex>>();
93  produces<std::vector<recob::EndPoint2D>>();
94  produces<art::Assns<recob::EndPoint2D, recob::Hit>>();
95  produces<art::Assns<recob::Vertex, recob::Hit>>();
96  produces<art::Assns<recob::Vertex, recob::Shower>>();
97  produces<art::Assns<recob::Vertex, recob::Track>>();
98  }
99 
100  //-------------------------------------------------------------------------
102  {
103  // get access to the TFile service
105  dtIC = tfs->make<TH1D>("dtIC", "It0-Ct0", 100, -5, 5);
106  dtIC->Sumw2();
107  }
108 
109  // //-----------------------------------------------------------------------------
111  {
113  auto const& wireReadoutGeom = art::ServiceHandle<geo::WireReadout>()->Get();
114  auto const clockData = art::ServiceHandle<detinfo::DetectorClocksService const>()->DataFor(evt);
115  auto const detProp =
117 
118  auto const& tpc = geom->TPC({0, 0});
119  double YC = tpc.HalfHeight() * 2.;
120 
121  // wire angle with respect to the vertical direction
122  double Angle = wireReadoutGeom.Plane({tpc.ID(), 1}).Wire(0).ThetaZ(false) - TMath::Pi() / 2.;
123 
124  // Parameters temporary defined here, but possibly to be retrieved somewhere
125  // in the code
126  double timetick = sampling_rate(clockData) * 1.e-3; // time sample in us
127  double presamplings = trigger_offset(clockData);
128 
129  double wire_pitch = wireReadoutGeom.Plane({0, 0, 0}).WirePitch(); //wire pitch in cm
130  double Efield_drift = detProp.Efield(); // Electric Field in the drift region in kV/cm
131  double Temperature = detProp.Temperature(); // LAr Temperature in K
132 
133  //drift velocity in the drift region (cm/us)
134  double driftvelocity = detProp.DriftVelocity(Efield_drift, Temperature);
135 
136  //time sample (cm)
137  double timepitch = driftvelocity * timetick;
138 
139  art::Handle<std::vector<recob::Cluster>> clusterListHandle;
140  evt.getByLabel(fClusterModuleLabel, clusterListHandle);
141 
143  for (unsigned int ii = 0; ii < clusterListHandle->size(); ++ii) {
144  art::Ptr<recob::Cluster> clusterHolder(clusterListHandle, ii);
145  clusters.push_back(clusterHolder);
146  }
147 
148  art::FindManyP<recob::Hit> fmh(clusterListHandle, evt, fClusterModuleLabel);
149 
150  //Point to a collection of vertices to output.
151  std::unique_ptr<std::vector<recob::Vertex>> vcol(new std::vector<recob::Vertex>); //3D vertex
152  std::unique_ptr<std::vector<recob::EndPoint2D>> epcol(
153  new std::vector<recob::EndPoint2D>); //2D vertex
154  std::unique_ptr<art::Assns<recob::EndPoint2D, recob::Hit>> assnep(
156  std::unique_ptr<art::Assns<recob::Vertex, recob::Shower>> assnsh(
158  std::unique_ptr<art::Assns<recob::Vertex, recob::Track>> assntr(
160  std::unique_ptr<art::Assns<recob::Vertex, recob::Hit>> assnh(
162 
163  // nplanes here is really being used as a proxy for the number of views in the
164  // detector
165  int nplanes = wireReadoutGeom.Views().size();
166 
167  std::vector<std::vector<int>> Cls(nplanes); //index to clusters in each view
168  std::vector<std::vector<CluLen>> clulens(nplanes);
169 
170  std::vector<double> dtdwstart;
171 
172  //loop over clusters
173  for (size_t iclu = 0; iclu < clusters.size(); ++iclu) {
174 
175  float w0 = clusters[iclu]->StartWire();
176  float w1 = clusters[iclu]->EndWire();
177  float t0 = clusters[iclu]->StartTick();
178  float t1 = clusters[iclu]->EndTick();
179 
180  CluLen clulen;
181  clulen.index = iclu;
182  clulen.length = std::hypot((w0 - w1) * wire_pitch,
183  detProp.ConvertTicksToX(t0, clusters[iclu]->View(), 0, 0) -
184  detProp.ConvertTicksToX(t1, clusters[iclu]->View(), 0, 0));
185 
186  switch (clusters[iclu]->View()) {
187 
188  case geo::kU: clulens[0].push_back(clulen); break;
189  case geo::kV: clulens[1].push_back(clulen); break;
190  case geo::kZ: clulens[2].push_back(clulen); break;
191  default: break;
192  }
193 
194  std::vector<double> wires;
195  std::vector<double> times;
196 
197  std::vector<art::Ptr<recob::Hit>> hit = fmh.at(iclu);
198  std::sort(hit.begin(), hit.end(), SortByWire());
199  int n = 0;
200  for (size_t i = 0; i < hit.size(); ++i) {
201  wires.push_back(hit[i]->WireID().Wire);
202  times.push_back(hit[i]->PeakTime());
203  ++n;
204  }
205  if (n >= 2) {
206  TGraph* the2Dtrack = new TGraph(std::min(10, n), &wires[0], &times[0]);
207  try {
208  the2Dtrack->Fit("pol1", "Q");
209  TF1* pol1 = (TF1*)the2Dtrack->GetFunction("pol1");
210  double par[2];
211  pol1->GetParameters(par);
212  dtdwstart.push_back(par[1]);
213  }
214  catch (...) {
215  mf::LogWarning("VertexFinder2D") << "Fitter failed";
216  delete the2Dtrack;
217  dtdwstart.push_back(std::tan(clusters[iclu]->StartAngle()));
218  continue;
219  }
220  delete the2Dtrack;
221  }
222  else
223  dtdwstart.push_back(std::tan(clusters[iclu]->StartAngle()));
224  }
225 
226  //sort clusters based on 2D length
227  for (size_t i = 0; i < clulens.size(); ++i) {
228  std::sort(clulens[i].begin(), clulens[i].end(), myfunction);
229  for (size_t j = 0; j < clulens[i].size(); ++j) {
230  Cls[i].push_back(clulens[i][j].index);
231  }
232  }
233 
234  std::vector<std::vector<int>> cluvtx(nplanes);
235  std::vector<double> vtx_w;
236  std::vector<double> vtx_t;
237 
238  for (int i = 0; i < nplanes; ++i) {
239  if (Cls[i].size() >= 1) {
240  //at least one cluster
241  //find the longest two clusters
242  int c1 = -1;
243  int c2 = -1;
244  double ww0 = -999;
245  double wb1 = -999;
246  double we1 = -999;
247  double wb2 = -999;
248  double we2 = -999;
249  double tt1 = -999;
250  double tt2 = -999;
251  double dtdw1 = -999;
252  double dtdw2 = -999;
253  double lclu1 = -999;
254  double lclu2 = -999;
255  for (unsigned j = 0; j < Cls[i].size(); ++j) {
256  double lclu = std::sqrt(
257  pow((clusters[Cls[i][j]]->StartWire() - clusters[Cls[i][j]]->EndWire()) * 13.5, 2) +
258  pow(clusters[Cls[i][j]]->StartTick() - clusters[Cls[i][j]]->EndTick(), 2));
259  bool rev = false;
260  bool deltaraylike = false;
261  bool enoughhits = false;
262  if (c1 != -1) {
263  double wb = clusters[Cls[i][j]]->StartWire();
264  double we = clusters[Cls[i][j]]->EndWire();
265  double tt = clusters[Cls[i][j]]->StartTick();
266  double dtdw = dtdwstart[Cls[i][j]];
267  int nhits = fmh.at(Cls[i][j]).size();
268  ww0 = (tt - tt1 + dtdw1 * wb1 - dtdw * wb) / (dtdw1 - dtdw);
269  if (std::abs(wb1 - ww0) > std::abs(we1 - ww0)) rev = true; //reverse cluster dir
270  if ((!rev && ww0 > wb1 + 15) || (rev && ww0 < we1 - 15)) deltaraylike = true;
271  if (((!rev && ww0 > wb1 + 10) || (rev && ww0 < we1 - 10)) && nhits < 5)
272  deltaraylike = true;
273  if (wb > wb1 + 20 && nhits < 20) deltaraylike = true;
274  if (wb > wb1 + 50 && nhits < 20) deltaraylike = true;
275  if (wb > wb1 + 8 && TMath::Abs(dtdw1 - dtdw) < 0.15) deltaraylike = true;
276  if (std::abs(wb - wb1) > 30 && std::abs(we - we1) > 30) deltaraylike = true;
277  if (std::abs(tt - tt1) > 100)
278  deltaraylike = true; //not really deltaray, but isolated cluster
279  //make sure there are enough hits in the cluster
280  //at leaset 2 hits if goes horizentally, at leaset 4 hits if goes vertically
281  double alpha = std::atan(dtdw);
282  if (nhits >= int(2 + 3 * (1 - std::abs(std::cos(alpha))))) enoughhits = true;
283  if (nhits < 5 && (ww0 < wb1 - 20 || ww0 > we1 + 20)) enoughhits = false;
284  }
285  //do not replace the second cluster if the 3rd cluster is not consistent with the existing 2
286  bool replace = true;
287  if (c1 != -1 && c2 != -1) {
288  double wb = clusters[Cls[i][j]]->StartWire();
289  double we = clusters[Cls[i][j]]->EndWire();
290  ww0 = (tt2 - tt1 + dtdw1 * wb1 - dtdw2 * wb2) / (dtdw1 - dtdw2);
291  if ((std::abs(ww0 - wb1) < 10 || std::abs(ww0 - we1) < 10) &&
292  (std::abs(ww0 - wb2) < 10 || std::abs(ww0 - we2) < 10)) {
293  if (std::abs(ww0 - wb) > 15 && std::abs(ww0 - we) > 15) replace = false;
294  }
295  }
296  if (lclu1 < lclu) {
297  if (c1 != -1 && !deltaraylike && enoughhits) {
298  lclu2 = lclu1;
299  c2 = c1;
300  wb2 = wb1;
301  we2 = we1;
302  tt2 = tt1;
303  dtdw2 = dtdw1;
304  }
305  lclu1 = lclu;
306  c1 = Cls[i][j];
307  wb1 = clusters[Cls[i][j]]->StartWire();
308  we1 = clusters[Cls[i][j]]->EndWire();
309  tt1 = clusters[Cls[i][j]]->StartTick();
310  if (wb1 > we1) {
311  wb1 = clusters[Cls[i][j]]->EndWire();
312  we1 = clusters[Cls[i][j]]->StartWire();
313  tt1 = clusters[Cls[i][j]]->EndTick();
314  }
315  dtdw1 = dtdwstart[Cls[i][j]];
316  }
317  else if (lclu2 < lclu) {
318  if (!deltaraylike && enoughhits && replace) {
319  lclu2 = lclu;
320  c2 = Cls[i][j];
321  wb2 = clusters[Cls[i][j]]->StartWire();
322  we2 = clusters[Cls[i][j]]->EndWire();
323  tt2 = clusters[Cls[i][j]]->StartTick();
324  dtdw2 = dtdwstart[Cls[i][j]];
325  }
326  }
327  }
328  if (c1 != -1 && c2 != -1) {
329  cluvtx[i].push_back(c1);
330  cluvtx[i].push_back(c2);
331 
332  double w1 = clusters[c1]->StartWire();
333  double t1 = clusters[c1]->StartTick();
334  if (clusters[c1]->StartWire() > clusters[c1]->EndWire()) {
335  w1 = clusters[c1]->EndWire();
336  t1 = clusters[c1]->EndTick();
337  }
338  double k1 = dtdwstart[c1];
339  double w2 = clusters[c2]->StartWire();
340  double t2 = clusters[c2]->StartTick();
341  if (clusters[c2]->StartWire() > clusters[c2]->EndWire()) {
342  w1 = clusters[c2]->EndWire();
343  t1 = clusters[c2]->EndTick();
344  }
345  double k2 = dtdwstart[c2];
346  // calculate the vertex
347  if (std::abs(k1 - k2) < 0.5) {
348  vtx_w.push_back(w1);
349  vtx_t.push_back(t1);
350  }
351  else {
352  double t0 = (k1 * k2 * (w1 - w2) + k1 * t2 - k2 * t1) / (k1 - k2);
353  double w0 = (t2 - t1 + k1 * w1 - k2 * w2) / (k1 - k2);
354  vtx_w.push_back(w0);
355  vtx_t.push_back(t0);
356  }
357  }
358  else if (Cls[i].size() >= 1) {
359  if (c1 != -1) {
360  cluvtx[i].push_back(c1);
361  vtx_w.push_back(wb1);
362  vtx_t.push_back(tt1);
363  }
364  else {
365  cluvtx[i].push_back(Cls[i][0]);
366  vtx_w.push_back(clusters[Cls[i][0]]->StartWire());
367  vtx_t.push_back(clusters[Cls[i][0]]->StartTick());
368  }
369  }
370  //save 2D vertex
371  // make an empty art::PtrVector of hits
374  std::vector<art::Ptr<recob::Hit>> hits = fmh.at(Cls[i][0]);
375  double totalQ = 0.;
376  for (size_t h = 0; h < hits.size(); ++h)
377  totalQ += hits[h]->Integral();
378 
379  geo::WireID wireID(hits[0]->WireID().asPlaneID(),
380  (unsigned int)vtx_w.back()); //for update to EndPoint2D ... WK 4/22/13
381 
382  recob::EndPoint2D vertex(vtx_t.back(),
383  wireID, //for update to EndPoint2D ... WK 4/22/13
384  1,
385  epcol->size(),
386  clusters[Cls[i][0]]->View(),
387  totalQ);
388  epcol->push_back(vertex);
389 
390  util::CreateAssn(evt, *epcol, hits, *assnep);
391  }
392  else {
393  //no cluster found
394  vtx_w.push_back(-1);
395  vtx_t.push_back(-1);
396  }
397  }
398 
399  Double_t vtxcoord[3];
400  if (Cls[0].size() > 0 && Cls[1].size() > 0) { //ignore w view
401  double Iw0 = (vtx_w[0] + 3.95) * wire_pitch;
402  double Cw0 = (vtx_w[1] + 1.84) * wire_pitch;
403 
404  double It0 = vtx_t[0] - presamplings;
405  It0 *= timepitch;
406  double Ct0 = vtx_t[1] - presamplings;
407  Ct0 *= timepitch;
408  vtxcoord[0] = detProp.ConvertTicksToX(vtx_t[1], 1, 0, 0);
409  vtxcoord[1] = (Cw0 - Iw0) / (2. * std::sin(Angle));
410  vtxcoord[2] = (Cw0 + Iw0) / (2. * std::cos(Angle)) - YC / 2. * std::tan(Angle);
411 
412  if (vtx_w[0] >= 0 && vtx_w[0] <= 239 && vtx_w[1] >= 0 && vtx_w[1] <= 239) {
413  if (auto intersection = wireReadoutGeom.ChannelsIntersect(
414  wireReadoutGeom.PlaneWireToChannel(
415  geo::WireID(0, 0, 0, (int)((Iw0 / wire_pitch) - 3.95))),
416  wireReadoutGeom.PlaneWireToChannel(
417  geo::WireID(0, 0, 1, (int)((Cw0 / wire_pitch) - 1.84))))) {
418  // channelsintersect provides a slightly more accurate set of y and z coordinates.
419  // use channelsintersect in case the wires in question do cross.
420  vtxcoord[1] = intersection->y;
421  vtxcoord[2] = intersection->z;
422  }
423  else {
424  vtxcoord[0] = -99999;
425  vtxcoord[1] = -99999;
426  vtxcoord[2] = -99999;
427  }
428  }
429  dtIC->Fill(It0 - Ct0);
430  }
431  else {
432  vtxcoord[0] = -99999;
433  vtxcoord[1] = -99999;
434  vtxcoord[2] = -99999;
435  }
436 
439  art::PtrVector<recob::Track> vTracks_vec;
440  art::PtrVector<recob::Shower> vShowers_vec;
441 
442  recob::Vertex the3Dvertex(vtxcoord, vcol->size());
443  vcol->push_back(the3Dvertex);
444 
445  if (vShowers_vec.size() > 0) { util::CreateAssn(evt, *vcol, vShowers_vec, *assnsh); }
446 
447  if (vTracks_vec.size() > 0) { util::CreateAssn(evt, *vcol, vTracks_vec, *assntr); }
448 
449  MF_LOG_VERBATIM("Summary") << std::setfill('-') << std::setw(175) << "-" << std::setfill(' ');
450  MF_LOG_VERBATIM("Summary") << "VertexFinder2D Summary:";
451  for (size_t i = 0; i < epcol->size(); ++i)
452  MF_LOG_VERBATIM("Summary") << epcol->at(i);
453  for (size_t i = 0; i < vcol->size(); ++i)
454  MF_LOG_VERBATIM("Summary") << vcol->at(i);
455 
456  evt.put(std::move(epcol));
457  evt.put(std::move(vcol));
458  evt.put(std::move(assnep));
459  evt.put(std::move(assntr));
460  evt.put(std::move(assnsh));
461  evt.put(std::move(assnh));
462 
463  } // end of produce
464 } // end of vertex namespace
465 
466 //-----------------------------------------------------------------------------
467 
code to link reconstructed objects back to the MC truth information
TTree * t1
Definition: plottest35.C:26
Planes which measure V.
Definition: geo_types.h:132
Declaration of signal hit object.
constexpr auto abs(T v)
Returns the absolute value of the argument.
Planes which measure Z direction.
Definition: geo_types.h:134
cout<< "Opened file "<< fin<< " ixs= "<< ixs<< endl;if(ixs==0) hhh=(TH1F *) fff-> Get("h1")
Definition: AddMC.C:8
Definition of vertex object for LArSoft.
Definition: Vertex.h:35
PutHandle< PROD > put(std::unique_ptr< PROD > &&edp, std::string const &instance={})
Definition: Event.h:77
decltype(auto) constexpr end(T &&obj)
ADL-aware version of std::end.
Definition: StdUtils.h:77
decltype(auto) constexpr size(T &&obj)
ADL-aware version of std::size.
Definition: StdUtils.h:101
Definition: type_traits.h:61
Planes which measure U.
Definition: geo_types.h:131
void hits()
Definition: readHits.C:15
bool SortByWire(art::Ptr< recob::Hit > const &h1, art::Ptr< recob::Hit > const &h2)
TCanvas * c1
Definition: plotHisto.C:7
TCanvas * c2
Definition: plot_hist.C:75
#define DEFINE_ART_MODULE(klass)
Definition: ModuleMacros.h:65
IDparameter< geo::WireID > WireID
Member type of validated geo::WireID parameter.
void beginJob()
Definition: Breakpoints.cc:14
void push_back(Ptr< U > const &p)
Definition: PtrVector.h:435
void produce(art::Event &evt) override
Declaration of cluster object.
size_type size() const
Definition: PtrVector.h:302
Detector simulation of raw signals on wires.
TTree * t2
Definition: plottest35.C:36
TH1F * h2
Definition: plot.C:44
Encapsulate the geometry of a wire .
double HalfHeight() const
Height is associated with y coordinate [cm].
Definition: TPCGeo.h:106
bool CreateAssn(art::Event &evt, std::vector< T > const &a, art::Ptr< U > const &b, art::Assns< U, T > &assn, std::string a_instance, size_t index=UINT_MAX)
Creates a single one-to-one association.
bool getByLabel(std::string const &label, std::string const &instance, Handle< PROD > &result) const
Utility object to perform functions of association.
Encapsulate the construction of a single detector plane .
Provides recob::Track data product.
#define MF_LOG_VERBATIM(category)
MaybeLogger_< ELseverityLevel::ELsev_warning, false > LogWarning
int trigger_offset(DetectorClocksData const &data)
TH1F * h1
Definition: plot.C:41
Char_t n[5]
decltype(auto) constexpr begin(T &&obj)
ADL-aware version of std::begin.
Definition: StdUtils.h:69
TCEvent evt
Definition: DataStructs.cxx:8
TPCGeo const & TPC(TPCID const &tpcid=details::tpc_zero) const
Returns the specified TPC.
Definition: GeometryCore.h:448
double sampling_rate(DetectorClocksData const &data)
Returns the period of the TPC readout electronics clock.
raw::ChannelID_t Channel() const
ID of the readout channel the hit was extracted from.
Definition: Hit.h:278
art framework interface to geometry description
vertex reconstruction