LArSoft  v06_85_00
Liquid Argon Software toolkit - http://larsoft.org/
lar_cluster3d::DBScanAlg Class Reference

DBScanAlg class definiton. More...

Inheritance diagram for lar_cluster3d::DBScanAlg:
lar_cluster3d::IClusterAlg

Public Types

enum  TimeValues {
  BUILDTHREEDHITS = 0, BUILDHITTOHITMAP = 1, RUNDBSCAN = 2, BUILDCLUSTERINFO = 3,
  PATHFINDING = 4, NUMTIMEVALUES
}
 enumerate the possible values for time checking if monitoring timing More...
 

Public Member Functions

 DBScanAlg (fhicl::ParameterSet const &pset)
 Constructor. More...
 
 ~DBScanAlg ()
 Destructor. More...
 
void configure (const fhicl::ParameterSet &) override
 Interface for configuring the particular algorithm tool. More...
 
void Cluster3DHits (reco::HitPairList &hitPairList, reco::ClusterParametersList &clusterParametersList) const override
 Given a set of recob hits, run DBscan to form 3D clusters. More...
 
void Cluster3DHits (reco::HitPairListPtr &hitPairList, reco::ClusterParametersList &clusterParametersList) const override
 Given a set of recob hits, run DBscan to form 3D clusters. More...
 
float getTimeToExecute (IClusterAlg::TimeValues index) const override
 If monitoring, recover the time to execute a particular function. More...
 

Private Member Functions

void expandCluster (const kdTree::KdTreeNode &, kdTree::CandPairList &, reco::ClusterParameters &, size_t) const
 the main routine for DBScan More...
 

Private Attributes

bool m_enableMonitoring
 Data members to follow. More...
 
size_t m_minPairPts
 
std::vector< float > m_timeVector
 
ClusterParamsBuilder m_clusterBuilder
 
kdTree m_kdTree
 

Detailed Description

DBScanAlg class definiton.

Definition at line 35 of file DBScanAlg_tool.cc.

Member Enumeration Documentation

enumerate the possible values for time checking if monitoring timing

Enumerator
BUILDTHREEDHITS 
BUILDHITTOHITMAP 
RUNDBSCAN 
BUILDCLUSTERINFO 
PATHFINDING 
NUMTIMEVALUES 

Definition at line 61 of file IClusterAlg.h.

Constructor & Destructor Documentation

lar_cluster3d::DBScanAlg::DBScanAlg ( fhicl::ParameterSet const &  pset)
explicit

Constructor.

Parameters
pset

Definition at line 96 of file DBScanAlg_tool.cc.

References configure().

96  :
97  m_clusterBuilder(pset.get<fhicl::ParameterSet>("ClusterParamsBuilder")),
98  m_kdTree(pset.get<fhicl::ParameterSet>("kdTree"))
99 {
100  this->configure(pset);
101 }
void configure(const fhicl::ParameterSet &) override
Interface for configuring the particular algorithm tool.
ClusterParamsBuilder m_clusterBuilder
lar_cluster3d::DBScanAlg::~DBScanAlg ( )

Destructor.

Definition at line 105 of file DBScanAlg_tool.cc.

106 {
107 }

Member Function Documentation

void lar_cluster3d::DBScanAlg::Cluster3DHits ( reco::HitPairList hitPairList,
reco::ClusterParametersList clusterParametersList 
) const
overridevirtual

Given a set of recob hits, run DBscan to form 3D clusters.

Parameters
hitPairListThe input list of 3D hits to run clustering on
clusterParametersListA list of cluster objects (parameters from associated hits)

Driver for processing input 2D hits, transforming to 3D hits and building lists of associated 3D hits (candidate 3D clusters)

Implements lar_cluster3d::IClusterAlg.

Definition at line 117 of file DBScanAlg_tool.cc.

References reco::ClusterParameters::addHit3D(), lar_cluster3d::ClusterParamsBuilder::BuildClusterInfo(), lar_cluster3d::IClusterAlg::BUILDCLUSTERINFO, lar_cluster3d::IClusterAlg::BUILDHITTOHITMAP, lar_cluster3d::kdTree::BuildKdTree(), reco::ClusterHit3D::CLUSTERATTACHED, reco::ClusterHit3D::CLUSTERNOISE, reco::ClusterHit3D::CLUSTERVISITED, expandCluster(), lar_cluster3d::kdTree::FindNearestNeighbors(), lar_cluster3d::kdTree::getTimeToExecute(), m_clusterBuilder, m_enableMonitoring, m_kdTree, m_minPairPts, m_timeVector, max, lar_cluster3d::IClusterAlg::NUMTIMEVALUES, and lar_cluster3d::IClusterAlg::RUNDBSCAN.

119 {
124  cet::cpu_timer theClockDBScan;
125 
126  m_timeVector.resize(NUMTIMEVALUES, 0.);
127 
128  // DBScan is driven of its "epsilon neighborhood". Computing adjacency within DBScan can be time
129  // consuming so the idea is the prebuild the adjaceny map and then run DBScan.
130  // We'll employ a kdTree to implement this scheme
131  kdTree::KdTreeNodeList kdTreeNodeContainer;
132  kdTree::KdTreeNode topNode = m_kdTree.BuildKdTree(hitPairList, kdTreeNodeContainer);
133 
135 
136  if (m_enableMonitoring) theClockDBScan.start();
137 
138  // Ok, here we go!
139  // The idea is to loop through all of the input 3D hits and do the clustering
140  for(const auto& hit : hitPairList)
141  {
142  // Check if the hit has already been visited
143  if (hit->getStatusBits() & reco::ClusterHit3D::CLUSTERVISITED) continue;
144 
145  // Mark as visited
147 
148  // Find the neighborhood for this hit
149  kdTree::CandPairList candPairList;
150  float bestDistance(std::numeric_limits<float>::max());
151 
152  m_kdTree.FindNearestNeighbors(hit.get(), topNode, candPairList, bestDistance);
153 
154  if (candPairList.size() < m_minPairPts)
155  {
156  hit->setStatusBit(reco::ClusterHit3D::CLUSTERNOISE);
157  }
158  else
159  {
160  // "Create" a new cluster and get a reference to it
161  clusterParametersList.push_back(reco::ClusterParameters());
162 
163  reco::ClusterParameters& curCluster = clusterParametersList.back();
164 
166  curCluster.addHit3D(hit.get());
167 
168  // expand the cluster
169  expandCluster(topNode, candPairList, curCluster, m_minPairPts);
170  }
171  }
172 
173  if (m_enableMonitoring)
174  {
175  theClockDBScan.stop();
176 
177  m_timeVector[RUNDBSCAN] = theClockDBScan.accumulated_real_time();
178  }
179 
180  // Initial clustering is done, now trim the list and get output parameters
181  cet::cpu_timer theClockBuildClusters;
182 
183  // Start clocks if requested
184  if (m_enableMonitoring) theClockBuildClusters.start();
185 
186  m_clusterBuilder.BuildClusterInfo(clusterParametersList);
187 
188  if (m_enableMonitoring)
189  {
190  theClockBuildClusters.stop();
191 
192  m_timeVector[BUILDCLUSTERINFO] = theClockBuildClusters.accumulated_real_time();
193  }
194 
195  mf::LogDebug("Cluster3D") << ">>>>> DBScan done, found " << clusterParametersList.size() << " clusters" << std::endl;
196 
197  return;
198 }
void expandCluster(const kdTree::KdTreeNode &, kdTree::CandPairList &, reco::ClusterParameters &, size_t) const
the main routine for DBScan
bool m_enableMonitoring
Data members to follow.
std::list< KdTreeNode > KdTreeNodeList
Definition: kdTree.h:58
size_t FindNearestNeighbors(const reco::ClusterHit3D *, const KdTreeNode &, CandPairList &, float &) const
Definition: kdTree.cxx:178
Labelled "noise" by a clustering algorithm.
Definition: Cluster3D.h:99
void BuildClusterInfo(reco::ClusterParametersList &clusterParametersList) const
Given the results of running DBScan, format the clusters so that they can be easily transferred back ...
Int_t max
Definition: plot.C:27
Detector simulation of raw signals on wires.
std::list< CandPair > CandPairList
Definition: kdTree.h:70
MaybeLogger_< ELseverityLevel::ELsev_success, false > LogDebug
ClusterParamsBuilder m_clusterBuilder
float getTimeToExecute() const
Definition: kdTree.h:86
"visited" by a clustering algorithm
Definition: Cluster3D.h:98
std::vector< float > m_timeVector
KdTreeNode & BuildKdTree(Hit3DVec::iterator, Hit3DVec::iterator, KdTreeNodeList &, int depth=0) const
Given an input set of ClusterHit3D objects, build a kd tree structure.
Definition: kdTree.cxx:120
attached to a cluster
Definition: Cluster3D.h:100
void addHit3D(const reco::ClusterHit3D *hit3D)
Definition: Cluster3D.h:385
void lar_cluster3d::DBScanAlg::Cluster3DHits ( reco::HitPairListPtr hitPairList,
reco::ClusterParametersList clusterParametersList 
) const
overridevirtual

Given a set of recob hits, run DBscan to form 3D clusters.

Parameters
hitPairListThe input list of 3D hits to run clustering on
clusterParametersListA list of cluster objects (parameters from associated hits)

Driver for processing input 2D hits, transforming to 3D hits and building lists of associated 3D hits (candidate 3D clusters)

Implements lar_cluster3d::IClusterAlg.

Definition at line 200 of file DBScanAlg_tool.cc.

References reco::ClusterParameters::addHit3D(), lar_cluster3d::ClusterParamsBuilder::BuildClusterInfo(), lar_cluster3d::IClusterAlg::BUILDCLUSTERINFO, lar_cluster3d::IClusterAlg::BUILDHITTOHITMAP, lar_cluster3d::kdTree::BuildKdTree(), reco::ClusterHit3D::CLUSTERATTACHED, reco::ClusterHit3D::CLUSTERNOISE, reco::ClusterHit3D::CLUSTERVISITED, expandCluster(), lar_cluster3d::kdTree::FindNearestNeighbors(), lar_cluster3d::kdTree::getTimeToExecute(), m_clusterBuilder, m_enableMonitoring, m_kdTree, m_minPairPts, m_timeVector, max, lar_cluster3d::IClusterAlg::NUMTIMEVALUES, and lar_cluster3d::IClusterAlg::RUNDBSCAN.

202 {
207  cet::cpu_timer theClockDBScan;
208 
209  m_timeVector.resize(NUMTIMEVALUES, 0.);
210 
211  // DBScan is driven of its "epsilon neighborhood". Computing adjacency within DBScan can be time
212  // consuming so the idea is the prebuild the adjaceny map and then run DBScan.
213  // We'll employ a kdTree to implement this scheme
214  kdTree::KdTreeNodeList kdTreeNodeContainer;
215  kdTree::KdTreeNode topNode = m_kdTree.BuildKdTree(hitPairList, kdTreeNodeContainer);
216 
218 
219  if (m_enableMonitoring) theClockDBScan.start();
220 
221  // Ok, here we go!
222  // The idea is to loop through all of the input 3D hits and do the clustering
223  for(const auto& hit : hitPairList)
224  {
225  // Check if the hit has already been visited
226  if (hit->getStatusBits() & reco::ClusterHit3D::CLUSTERVISITED) continue;
227 
228  // Mark as visited
230 
231  // Find the neighborhood for this hit
232  kdTree::CandPairList candPairList;
233  float bestDistance(std::numeric_limits<float>::max());
234 
235  m_kdTree.FindNearestNeighbors(hit, topNode, candPairList, bestDistance);
236 
237  if (candPairList.size() < m_minPairPts)
238  {
239  hit->setStatusBit(reco::ClusterHit3D::CLUSTERNOISE);
240  }
241  else
242  {
243  // "Create" a new cluster and get a reference to it
244  clusterParametersList.push_back(reco::ClusterParameters());
245 
246  reco::ClusterParameters& curCluster = clusterParametersList.back();
247 
249  curCluster.addHit3D(hit);
250 
251  // expand the cluster
252  expandCluster(topNode, candPairList, curCluster, m_minPairPts);
253  }
254  }
255 
256  if (m_enableMonitoring)
257  {
258  theClockDBScan.stop();
259 
260  m_timeVector[RUNDBSCAN] = theClockDBScan.accumulated_real_time();
261  }
262 
263  // Initial clustering is done, now trim the list and get output parameters
264  cet::cpu_timer theClockBuildClusters;
265 
266  // Start clocks if requested
267  if (m_enableMonitoring) theClockBuildClusters.start();
268 
269  m_clusterBuilder.BuildClusterInfo(clusterParametersList);
270 
271  if (m_enableMonitoring)
272  {
273  theClockBuildClusters.stop();
274 
275  m_timeVector[BUILDCLUSTERINFO] = theClockBuildClusters.accumulated_real_time();
276  }
277 
278  mf::LogDebug("Cluster3D") << ">>>>> DBScan done, found " << clusterParametersList.size() << " clusters" << std::endl;
279 
280  return;
281 }
void expandCluster(const kdTree::KdTreeNode &, kdTree::CandPairList &, reco::ClusterParameters &, size_t) const
the main routine for DBScan
bool m_enableMonitoring
Data members to follow.
std::list< KdTreeNode > KdTreeNodeList
Definition: kdTree.h:58
size_t FindNearestNeighbors(const reco::ClusterHit3D *, const KdTreeNode &, CandPairList &, float &) const
Definition: kdTree.cxx:178
Labelled "noise" by a clustering algorithm.
Definition: Cluster3D.h:99
void BuildClusterInfo(reco::ClusterParametersList &clusterParametersList) const
Given the results of running DBScan, format the clusters so that they can be easily transferred back ...
Int_t max
Definition: plot.C:27
Detector simulation of raw signals on wires.
std::list< CandPair > CandPairList
Definition: kdTree.h:70
MaybeLogger_< ELseverityLevel::ELsev_success, false > LogDebug
ClusterParamsBuilder m_clusterBuilder
float getTimeToExecute() const
Definition: kdTree.h:86
"visited" by a clustering algorithm
Definition: Cluster3D.h:98
std::vector< float > m_timeVector
KdTreeNode & BuildKdTree(Hit3DVec::iterator, Hit3DVec::iterator, KdTreeNodeList &, int depth=0) const
Given an input set of ClusterHit3D objects, build a kd tree structure.
Definition: kdTree.cxx:120
attached to a cluster
Definition: Cluster3D.h:100
void addHit3D(const reco::ClusterHit3D *hit3D)
Definition: Cluster3D.h:385
void lar_cluster3d::DBScanAlg::configure ( const fhicl::ParameterSet )
overridevirtual

Interface for configuring the particular algorithm tool.

Parameters
ParameterSetThe input set of parameters for configuration

Implements lar_cluster3d::IClusterAlg.

Definition at line 111 of file DBScanAlg_tool.cc.

References fhicl::ParameterSet::get(), m_enableMonitoring, and m_minPairPts.

Referenced by DBScanAlg().

112 {
113  m_enableMonitoring = pset.get<bool> ("EnableMonitoring", true );
114  m_minPairPts = pset.get<size_t>("MinPairPts", 2 );
115 }
bool m_enableMonitoring
Data members to follow.
void lar_cluster3d::DBScanAlg::expandCluster ( const kdTree::KdTreeNode topNode,
kdTree::CandPairList candPairList,
reco::ClusterParameters cluster,
size_t  minPts 
) const
private

the main routine for DBScan

Definition at line 283 of file DBScanAlg_tool.cc.

References reco::ClusterParameters::addHit3D(), reco::ClusterHit3D::CLUSTERATTACHED, reco::ClusterHit3D::CLUSTERVISITED, DEFINE_ART_CLASS_TOOL, lar_cluster3d::kdTree::FindNearestNeighbors(), reco::ClusterHit3D::getStatusBits(), m_kdTree, max, and reco::ClusterHit3D::setStatusBit().

Referenced by Cluster3DHits(), and getTimeToExecute().

287 {
288  // This is the main inside loop for the DBScan based clustering algorithm
289 
290  // Loop over added hits until list has been exhausted
291  while(!candPairList.empty())
292  {
293  // Dereference the point so we can see in the debugger...
294  const reco::ClusterHit3D* neighborHit = candPairList.front().second;
295 
296  // Process if we've not been here before
297  if (!(neighborHit->getStatusBits() & reco::ClusterHit3D::CLUSTERVISITED))
298  {
299  // set as visited
301 
302  // get the neighborhood around this point
303  kdTree::CandPairList neighborCandPairList;
304  float bestDistance(std::numeric_limits<float>::max());
305 
306  m_kdTree.FindNearestNeighbors(neighborHit, topNode, neighborCandPairList, bestDistance);
307 
308  // If the epsilon neighborhood of this point is large enough then add its points to our list
309  if (neighborCandPairList.size() >= minPts)
310  {
311  std::copy(neighborCandPairList.begin(),neighborCandPairList.end(),std::back_inserter(candPairList));
312  }
313  }
314 
315  // If the point is not yet in a cluster then we now add
316  if (!(neighborHit->getStatusBits() & reco::ClusterHit3D::CLUSTERATTACHED))
317  {
319  cluster.addHit3D(neighborHit);
320  }
321 
322  candPairList.pop_front();
323  }
324 
325  return;
326 }
size_t FindNearestNeighbors(const reco::ClusterHit3D *, const KdTreeNode &, CandPairList &, float &) const
Definition: kdTree.cxx:178
unsigned int getStatusBits() const
Definition: Cluster3D.h:144
Int_t max
Definition: plot.C:27
std::list< CandPair > CandPairList
Definition: kdTree.h:70
"visited" by a clustering algorithm
Definition: Cluster3D.h:98
attached to a cluster
Definition: Cluster3D.h:100
void addHit3D(const reco::ClusterHit3D *hit3D)
Definition: Cluster3D.h:385
void setStatusBit(unsigned bits) const
Definition: Cluster3D.h:163
float lar_cluster3d::DBScanAlg::getTimeToExecute ( IClusterAlg::TimeValues  index) const
inlineoverridevirtual

If monitoring, recover the time to execute a particular function.

Implements lar_cluster3d::IClusterAlg.

Definition at line 73 of file DBScanAlg_tool.cc.

References expandCluster(), and m_timeVector.

73 {return m_timeVector.at(index);}
std::vector< float > m_timeVector

Member Data Documentation

ClusterParamsBuilder lar_cluster3d::DBScanAlg::m_clusterBuilder
private

Definition at line 92 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits().

bool lar_cluster3d::DBScanAlg::m_enableMonitoring
private

Data members to follow.

Definition at line 88 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), and configure().

kdTree lar_cluster3d::DBScanAlg::m_kdTree
private

Definition at line 93 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), and expandCluster().

size_t lar_cluster3d::DBScanAlg::m_minPairPts
private

Definition at line 89 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), and configure().

std::vector<float> lar_cluster3d::DBScanAlg::m_timeVector
mutableprivate

Definition at line 90 of file DBScanAlg_tool.cc.

Referenced by Cluster3DHits(), and getTimeToExecute().


The documentation for this class was generated from the following file: