LArSoft  v07_13_02
Liquid Argon Software toolkit - http://larsoft.org/
CalWireT962_module.cc
Go to the documentation of this file.
1 //
3 // CalWireT962 class
4 //
5 // brebel@fnal.gov
6 //
8 #ifndef CALWIRET962_H
9 #define CALWIRET962_H
10 
11 #include <stdint.h>
12 
13 // Framework includes
15 #include "fhiclcpp/ParameterSet.h"
16 #include "cetlib_except/exception.h"
17 #include "cetlib/search_path.h"
25 
26 // LArSoft includes
27 #include "larcoreobj/SimpleTypesAndConstants/RawTypes.h" // raw::ChannelID_t
29 #include "larevt/CalibrationDBI/Interface/ChannelStatusService.h"
30 #include "larevt/CalibrationDBI/Interface/ChannelStatusProvider.h"
32 #include "lardataobj/RawData/raw.h" // raw::Uncompress()
37 
38 // ROOT includes
39 #include <TFile.h>
40 #include <TH2D.h>
41 #include <TF1.h>
42 #include <TComplex.h>
43 
45 namespace caldata {
46 
47  class CalWireT962 : public art::EDProducer {
48 
49  public:
50 
51  // create calibrated signals on wires. this class runs
52  // an fft to remove the electronics shaping.
53  explicit CalWireT962(fhicl::ParameterSet const& pset);
54  virtual ~CalWireT962();
55 
56  void produce(art::Event& evt);
57  void beginJob();
58  void endJob();
59  void reconfigure(fhicl::ParameterSet const& p);
60 
61  private:
62 
63  std::string fResponseFile;
64  // for c2: fDataSize is not used
66  // int fDataSize; ///< size of raw data on one wire
69  std::string fDigitModuleLabel;
70 
71  std::vector<std::vector<TComplex> > fKernelR;
72  std::vector<std::vector<TComplex> > fKernelS;
74  std::vector<double> fDecayConstsR;
76  std::vector<double> fDecayConstsS;
78  std::vector<int> fKernMapR;
80  std::vector<int> fKernMapS;
82  protected:
84 
85  }; // class CalWireT962
86 }
87 
88 namespace caldata{
89 
90  //-------------------------------------------------
92  {
93  this->reconfigure(pset);
94 
95  produces< std::vector<recob::Wire> >();
96  produces<art::Assns<raw::RawDigit, recob::Wire>>();
97 
98  }
99 
100  //-------------------------------------------------
102  {
103  }
104 
107  {
108  fDigitModuleLabel = p.get< std::string >("DigitModuleLabel", "daq");
109  fExpEndBins = p.get< int > ("ExponentialEndBins");
110  fPostsample = p.get< int > ("PostsampleBins");
111 
112  cet::search_path sp("FW_SEARCH_PATH");
113  sp.find_file(p.get<std::string>("ResponseFile"), fResponseFile);
114 
115  }
116 
117  //-------------------------------------------------
119  {
120 
121  LOG_DEBUG("CalWireT962") << "CalWireT962_module: Opening Electronics Response File: "
122  << fResponseFile.c_str();
123 
124  TFile f(fResponseFile.c_str());
125  if( f.IsZombie() )
126  mf::LogWarning("CalWireT962") << "Cannot open response file "
127  << fResponseFile.c_str();
128 
129  TH2D *respRe = dynamic_cast<TH2D*>(f.Get("real/RespRe") );
130  TH2D *respIm = dynamic_cast<TH2D*>(f.Get("real/RespIm") );
131  TH1D *decayHist = dynamic_cast<TH1D*>(f.Get("real/decayHist"));
132  unsigned int wires = decayHist->GetNbinsX();
133  unsigned int bins = respRe->GetYaxis()->GetNbins();
134  unsigned int bin = 0;
135  unsigned int wire = 0;
136  fDecayConstsR.resize(wires);
137  fKernMapR.resize(wires);
138  fKernelR.resize(respRe->GetXaxis()->GetNbins());
139  const TArrayD *edges = respRe->GetXaxis()->GetXbins();
140  for(int i = 0; i < respRe->GetXaxis()->GetNbins(); ++i) {
141  fKernelR[i].resize(bins);
142  for(bin = 0; bin < bins; ++bin) {
143 
144  const TComplex a(respRe->GetBinContent(i+1,bin+1),
145  respIm->GetBinContent(i+1,bin+1));
146  fKernelR[i][bin]=a;
147  }
148  for(; wire < (*edges)[i+1]; ++wire) {
149  fKernMapR[wire]=i;
150  fDecayConstsR[wire]=decayHist->GetBinContent(wire+1);
151  }
152  }
153  respRe = dynamic_cast<TH2D*>(f.Get("sim/RespRe") );
154  respIm = dynamic_cast<TH2D*>(f.Get("sim/RespIm") );
155  decayHist = dynamic_cast<TH1D*>(f.Get("sim/decayHist"));
156  wires = decayHist->GetNbinsX();
157  bins = respRe->GetYaxis()->GetNbins();
158  fDecayConstsS.resize(wires);
159  fKernMapS.resize(wires);
160  fKernelS.resize(respRe->GetXaxis()->GetNbins());
161  const TArrayD *edges1 = respRe->GetXaxis()->GetXbins();
162  wire =0;
163  for(int i = 0; i < respRe->GetXaxis()->GetNbins(); ++i) {
164  fKernelS[i].resize(bins);
165  for(bin = 0; bin < bins; ++bin) {
166  const TComplex b(respRe->GetBinContent(i+1,bin+1),
167  respIm->GetBinContent(i+1,bin+1));
168  fKernelS[i][bin]=b;
169  }
170  for(; wire < (*edges1)[i+1]; ++wire) {
171  fKernMapS[wire]=i;
172  fDecayConstsS[wire]=decayHist->GetBinContent(wire+1);
173  }
174  }
175 
176  f.Close();
177  }
178 
181  {
182  }
183 
186  {
187 
188 
189  // get the geometry
191 
192  std::vector<double> decayConsts;
193  std::vector<int> kernMap;
194  std::vector<std::vector<TComplex> > kernel;
195  //Put correct response functions and decay constants in place
196  if(evt.isRealData()) {
197  decayConsts=fDecayConstsR;
198  kernMap=fKernMapR;
199  kernel=fKernelR;
200  }
201  else {
202  decayConsts=fDecayConstsS;
203  kernMap=fKernMapS;
204  kernel=fKernelS;
205  }
206 
207  // get the FFT service to have access to the FFT size
209 
210  // make a collection of Wires
211  std::unique_ptr<std::vector<recob::Wire> > wirecol(new std::vector<recob::Wire>);
212  // ... and an association set
213  std::unique_ptr<art::Assns<raw::RawDigit,recob::Wire> > WireDigitAssn
215 
216  // Read in the digit List object(s).
218  evt.getByLabel(fDigitModuleLabel, digitVecHandle);
219 
220  if (!digitVecHandle->size()) return;
221  mf::LogInfo("CalWireT962") << "CalWireT962:: digitVecHandle size is " << digitVecHandle->size();
222 
223  // Use the handle to get a particular (0th) element of collection.
224  art::Ptr<raw::RawDigit> digitVec0(digitVecHandle, 0);
225 
226  unsigned int dataSize = digitVec0->Samples(); //size of raw data vectors
227 
228  int transformSize = fFFT->FFTSize();
229  raw::ChannelID_t channel = raw::InvalidChannelID; // channel number
230  unsigned int bin(0); // time bin loop variable
231 
232  lariov::ChannelStatusProvider const& channelStatus
234 
235  double decayConst = 0.; // exponential decay constant of electronics shaping
236  double fitAmplitude = 0.; //This is the seed value for the amplitude in the exponential tail fit
237  std::vector<float> holder; // holds signal data
238  std::vector<TComplex> freqHolder(transformSize+1); // temporary frequency data
239 
240  // loop over all wires
241  for(unsigned int rdIter = 0; rdIter < digitVecHandle->size(); ++rdIter){ // ++ move
242  holder.clear();
243 
244  art::Ptr<raw::RawDigit> digitVec(digitVecHandle, rdIter);
245  raw::RawDigit::ADCvector_t rawadc(digitVec->Samples()); // vector holding uncompressed adc values
246  raw::Uncompress(digitVec->ADCs(), rawadc, digitVec->Compression());
247  channel = digitVec->Channel();
248 
249  // skip bad channels
250  if(!channelStatus.IsBad(channel)) {
251  holder.resize(transformSize);
252 
253  for(bin = 0; bin < dataSize; ++bin)
254  holder[bin]=(rawadc[bin]-digitVec->GetPedestal());
255  // fExpEndBins only nonzero for detectors needing exponential tail fitting
256  if(fExpEndBins && std::abs(decayConsts[channel]) > 0.0){
257 
258  TH1D expTailData("expTailData","Tail data for fit",
259  fExpEndBins,dataSize-fExpEndBins,dataSize);
260  TF1 expFit("expFit","[0]*exp([1]*x)");
261 
262  for(bin = 0; bin < (unsigned int)fExpEndBins; ++bin)
263  expTailData.Fill(dataSize-fExpEndBins+bin,holder[dataSize-fExpEndBins+bin]);
264  decayConst = decayConsts[channel];
265  fitAmplitude = holder[dataSize-fExpEndBins]/exp(decayConst*(dataSize-fExpEndBins));
266  expFit.FixParameter(1,decayConst);
267  expFit.SetParameter(0,fitAmplitude);
268  expTailData.Fit(&expFit,"QWN","",dataSize-fExpEndBins,dataSize);
269  expFit.SetRange(dataSize,transformSize);
270  for(bin = 0; bin < dataSize; ++bin)
271  holder[dataSize+bin]= expFit.Eval(bin+dataSize);
272  }
273  // This is actually deconvolution, by way of convolution with the inverted
274  // kernel. This code assumes the response function has already been
275  // been transformed and inverted. This way a complex multiplication, rather
276  // than a complex division is performed saving 2 multiplications and
277  // 2 divsions
278 
279  fFFT->Convolute(holder,kernel[kernMap[channel]]);
280  } // end if channel is a good channel
281 
282  holder.resize(dataSize,1e-5);
283  //This restores the DC component to signal removed by the deconvolution.
284  if(fPostsample) {
285  double average=0.0;
286  for(bin=0; bin < (unsigned int)fPostsample; ++bin)
287  average+=holder[holder.size()-1-bin]/(double)fPostsample;
288  for(bin = 0; bin < holder.size(); ++bin) holder[bin]-=average;
289  }
290 
291  // Make a single ROI that spans the entire data size
292  wirecol->push_back(recob::WireCreator(holder,*digitVec).move());
293 
294  // add an association between the last object in wirecol
295  // (that we just inserted) and digitVec
296  if (!util::CreateAssn(*this, evt, *wirecol, digitVec, *WireDigitAssn)) {
298  << "Can't associate wire #" << (wirecol->size() - 1)
299  << " with raw digit #" << digitVec.key();
300  } // if failed to add association
301  }
302 
303  if(wirecol->size() == 0)
304  mf::LogWarning("CalWireT962") << "No wires made for this event.";
305 
306  evt.put(std::move(wirecol));
307  evt.put(std::move(WireDigitAssn));
308 
309  return;
310  }
311 
312 } // end namespace caldata
313 
314 namespace caldata{
315 
317 
318 } // end namespace caldata
319 
320 #endif // CALWIRET962_H
321 
322 
key_type key() const
Definition: Ptr.h:356
float GetPedestal() const
Definition: RawDigit.h:213
const ADCvector_t & ADCs() const
Reference to the compressed ADC count vector.
Definition: RawDigit.h:209
MaybeLogger_< ELseverityLevel::ELsev_info, false > LogInfo
int fPostsample
number of postsample bins
Helper functions to create a wire.
ChannelID_t Channel() const
DAQ channel this raw data was read from.
Definition: RawDigit.h:211
std::vector< short > ADCvector_t
Type representing a (compressed) vector of ADC counts.
Definition: RawDigit.h:72
Definition of basic raw digits.
bool isRealData() const
Definition: Event.h:83
Class managing the creation of a new recob::Wire object.
Definition: WireCreator.h:53
creation of calibrated signals on wires
std::vector< std::vector< TComplex > > fKernelR
std::vector< double > fDecayConstsS
unsigned short Samples() const
Number of samples in the uncompressed ADC data.
Definition: RawDigit.h:212
TFile f
Definition: plotHisto.C:6
ProductID put(std::unique_ptr< PROD > &&product)
Definition: Event.h:102
int FFTSize() const
Definition: LArFFT.h:69
constexpr ChannelID_t InvalidChannelID
ID of an invalid channel.
Definition: RawTypes.h:31
#define DEFINE_ART_MODULE(klass)
Definition: ModuleMacros.h:42
std::string fDigitModuleLabel
module that made digits
Collect all the RawData header files together.
T get(std::string const &key) const
Definition: ParameterSet.h:231
std::vector< int > fKernMapS
void Convolute(std::vector< T > &input, std::vector< T > &respFunc)
Definition: LArFFT.h:172
bool CreateAssn(PRODUCER const &prod, art::Event &evt, std::vector< T > const &a, art::Ptr< U > const &b, art::Assns< U, T > &assn, std::string a_instance, size_t indx=UINT_MAX)
Creates a single one-to-one association.
float bin[41]
Definition: plottest35.C:14
raw::Compress_t Compression() const
Compression algorithm used to store the ADC counts.
Definition: RawDigit.h:215
cet::coded_exception< errors::ErrorCodes, ExceptionDetail::translate > Exception
Definition: Exception.h:66
std::vector< double > fDecayConstsR
Utility object to perform functions of association.
bool getByLabel(std::string const &label, std::string const &productInstanceName, Handle< PROD > &result) const
Definition: DataViewImpl.h:344
#define LOG_DEBUG(id)
Declaration of basic channel signal object.
TCEvent evt
Definition: DataStructs.cxx:5
unsigned int ChannelID_t
Type representing the ID of a readout channel.
Definition: RawTypes.h:27
void produce(art::Event &evt)
void reconfigure(fhicl::ParameterSet const &p)
void Uncompress(const std::vector< short > &adc, std::vector< short > &uncompressed, raw::Compress_t compress)
Uncompresses a raw data buffer.
Definition: raw.cxx:756
Float_t e
Definition: plot.C:34
CalWireT962(fhicl::ParameterSet const &pset)
std::vector< std::vector< TComplex > > fKernelS
art framework interface to geometry description
std::vector< int > fKernMapR
int fExpEndBins
number of end bins to consider for tail fit