LArSoft  v06_85_00
Liquid Argon Software toolkit - http://larsoft.org/
NeutronOsc_module.cc
Go to the documentation of this file.
1 // Class: NeutronOsc
3 // Module Type: producer
4 // GENIE neutron-antineutron oscillation generator
5 //
6 // Adapted from NucleonDecay_module.cc (tjyang@fnal.gov)
7 // by jhewes15@fnal.gov
8 //
9 // Neutron-antineutron oscillation mode ID:
10 // ---------------------------------------------------------
11 // ID | Decay Mode
12 // |
13 // ---------------------------------------------------------
14 // 0 | Random oscillation mode
15 // 1 | p + nbar --> \pi^{+} + \pi^{0}
16 // 2 | p + nbar --> \pi^{+} + 2\pi^{0}
17 // 3 | p + nbar --> \pi^{+} + 3\pi^{0}
18 // 4 | p + nbar --> 2\pi^{+} + \pi^{-} + \pi^{0}
19 // 5 | p + nbar --> 2\pi^{+} + \pi^{-} + 2\pi^{0}
20 // 6 | p + nbar --> 2\pi^{+} + \pi^{-} + 2\omega^{0}
21 // 7 | p + nbar --> 3\pi^{+} + 2\pi^{-} + \pi^{0}
22 // 8 | n + nbar --> \pi^{+} + \pi^{-}
23 // 9 | n + nbar --> 2\pi^{0}
24 // 10 | n + nbar --> \pi^{+} + \pi^{-} + \pi^{0}
25 // 11 | n + nbar --> \pi^{+} + \pi^{-} + 2\pi^{0}
26 // 12 | n + nbar --> \pi^{+} + \pi^{-} + 3\pi^{0}
27 // 13 | n + nbar --> 2\pi^{+} + 2\pi^{-}
28 // 14 | n + nbar --> 2\pi^{+} + 2\pi^{-} + \pi^{0}
29 // 15 | n + nbar --> \pi^{+} + \pi^{-} + \omega^{0}
30 // 16 | n + nbar --> 2\pi^{+} + 2\pi^{-} + 2\pi^{0}
31 // ---------------------------------------------------------
32 //
34 
42 #include "fhiclcpp/ParameterSet.h"
44 
45 // GENIE includes
46 #include "Algorithm/AlgFactory.h"
47 #include "EVGCore/EventRecordVisitorI.h"
48 #include "EVGCore/EventRecord.h"
49 #include "NeutronOsc/NeutronOscMode.h"
50 #include "PDG/PDGLibrary.h"
51 #include "GHEP/GHepParticle.h"
52 #include "Utils/AppInit.h"
53 
54 // larsoft includes
62 
63 // c++ includes
64 #include <memory>
65 #include <string>
66 
67 #include "CLHEP/Random/RandFlat.h"
68 
69 namespace evgen {
70  class NeutronOsc;
71 }
72 
74 public:
75  explicit NeutronOsc(fhicl::ParameterSet const & p);
76  // The destructor generated by the compiler is fine for classes
77  // without bare pointers or other resource use.
78 
79  // Plugins should not be copied or assigned.
80  NeutronOsc(NeutronOsc const &) = delete;
81  NeutronOsc(NeutronOsc &&) = delete;
82  NeutronOsc & operator = (NeutronOsc const &) = delete;
83  NeutronOsc & operator = (NeutronOsc &&) = delete;
84 
85  // Required functions.
86  void produce(art::Event & e) override;
87 
88  // Selected optional functions.
89  void beginJob() override;
90  void beginRun(art::Run& run) override;
91 
92 private:
93 
94  // Additional functions
95  int SelectAnnihilationMode(int pdg_code);
96 
97  // Declare member data here.
98  const genie::EventRecordVisitorI * mcgen;
99  genie::NeutronOscMode_t gOptDecayMode = genie::kNONull; // neutron-antineutron oscillation mode
100 };
101 
102 
104 {
105  genie::PDGLibrary::Instance(); //Ensure Messenger is started first in GENIE.
106 
107  string sname = "genie::EventGenerator";
108  string sconfig = "NeutronOsc";
109  genie::AlgFactory * algf = genie::AlgFactory::Instance();
110  mcgen =
111  dynamic_cast<const genie::EventRecordVisitorI *> (algf->GetAlgorithm(sname,sconfig));
112  if(!mcgen) {
113  throw cet::exception("NeutronOsc") << "Couldn't instantiate the neutron-antineutron oscillation generator";
114  }
115  int fDecayMode = p.get<int>("DecayMode");
116  gOptDecayMode = (genie::NeutronOscMode_t) fDecayMode;
117 
118  produces< std::vector<simb::MCTruth> >();
119  produces< sumdata::RunData, art::InRun >();
120 
121  // create a default random engine; obtain the random seed from NuRandomService,
122  // unless overridden in configuration with key "Seed"
124  ->createEngine(*this, p, "Seed");
125 
126  unsigned int seed = art::ServiceHandle<rndm::NuRandomService>()->getSeed();
127  genie::utils::app_init::RandGen(seed);
128 }
129 
131 {
132  // Implementation of required member function here.
133  genie::EventRecord * event = new genie::EventRecord;
134  int target = 1000180400; //Only use argon target
135  int decay = SelectAnnihilationMode(target);
136  genie::Interaction * interaction = genie::Interaction::NOsc(target,decay);
137  event->AttachSummary(interaction);
138 
139  // Simulate decay
140  mcgen->ProcessEventRecord(event);
141 
142 // genie::Interaction *inter = event->Summary();
143 // const genie::InitialState &initState = inter->InitState();
144 // std::cout<<"initState = "<<initState.AsString()<<std::endl;
145 // const genie::ProcessInfo &procInfo = inter->ProcInfo();
146 // std::cout<<"procInfo = "<<procInfo.AsString()<<std::endl;
147  LOG_DEBUG("NeutronOsc")
148  << "Generated event: " << *event;
149 
150  std::unique_ptr< std::vector<simb::MCTruth> > truthcol(new std::vector<simb::MCTruth>);
151  simb::MCTruth truth;
152 
155  CLHEP::HepRandomEngine &engine = rng->getEngine();
156  CLHEP::RandFlat flat(engine);
157 
158  // Find boundary of active volume
159  double minx = 1e9;
160  double maxx = -1e9;
161  double miny = 1e9;
162  double maxy = -1e9;
163  double minz = 1e9;
164  double maxz = -1e9;
165  for (size_t i = 0; i<geo->NTPC(); ++i){
166  const geo::TPCGeo &tpc = geo->TPC(i);
167  if (minx>tpc.MinX()) minx = tpc.MinX();
168  if (maxx<tpc.MaxX()) maxx = tpc.MaxX();
169  if (miny>tpc.MinY()) miny = tpc.MinY();
170  if (maxy<tpc.MaxY()) maxy = tpc.MaxY();
171  if (minz>tpc.MinZ()) minz = tpc.MinZ();
172  if (maxz<tpc.MaxZ()) maxz = tpc.MaxZ();
173  }
174 
175  // Assign vertice position
176  double X0 = flat.fire( minx, maxx );
177  double Y0 = flat.fire( miny, maxy );
178  double Z0 = flat.fire( minz, maxz );
179 
180  TIter partitr(event);
181  genie::GHepParticle *part = 0;
182  // GHepParticles return units of GeV/c for p. the V_i are all in fermis
183  // and are relative to the center of the struck nucleus.
184  // add the vertex X/Y/Z to the V_i for status codes 0 and 1
185  int trackid = 0;
186  std::string primary("primary");
187 
188  while( (part = dynamic_cast<genie::GHepParticle *>(partitr.Next())) ){
189 
190  simb::MCParticle tpart(trackid,
191  part->Pdg(),
192  primary,
193  part->FirstMother(),
194  part->Mass(),
195  part->Status());
196 
197  TLorentzVector pos(X0, Y0, Z0, 0);
198  TLorentzVector mom(part->Px(), part->Py(), part->Pz(), part->E());
199  tpart.AddTrajectoryPoint(pos,mom);
200  if(part->PolzIsSet()) {
201  TVector3 polz;
202  part->GetPolarization(polz);
203  tpart.SetPolarization(polz);
204  }
205  truth.Add(tpart);
206 
207  ++trackid;
208  }// end loop to convert GHepParticles to MCParticles
209  truth.SetOrigin(simb::kUnknown);
210  truthcol->push_back(truth);
211  //FillHistograms(truth);
212  e.put(std::move(truthcol));
213 
214  delete event;
215  return;
216 
217 }
218 
220 {
221 
222  // grab the geometry object to see what geometry we are using
224  std::unique_ptr<sumdata::RunData> runcol(new sumdata::RunData(geo->DetectorName()));
225 
226  run.put(std::move(runcol));
227 
228  return;
229 }
230 
231 
233 {
234  // Implementation of optional member function here.
235 }
236 
238 {
239  // if the mode is set to 'random' (the default), pick one at random!
240  if ((int)gOptDecayMode == 0) {
241  int mode;
242 
243  std::string pdg_string = std::to_string(static_cast<long long>(pdg_code));
244  if (pdg_string.size() != 10) {
245  std::cout << "Expecting PDG code to be a 10-digit integer; instead, it's the following: " << pdg_string << std::endl;
246  exit(1);
247  }
248 
249  // count number of protons & neutrons
250  int n_nucleons = std::stoi(pdg_string.substr(6,3)) - 1;
251  int n_protons = std::stoi(pdg_string.substr(3,3));
252 
253  // factor proton / neutron ratio into branching ratios
254  double proton_frac = ((double)n_protons) / ((double)n_nucleons);
255  double neutron_frac = 1 - proton_frac;
256 
257  // set branching ratios, taken from bubble chamber data
258  const int n_modes = 16;
259  double br [n_modes] = { 0.010, 0.080, 0.100, 0.220,
260  0.360, 0.160, 0.070, 0.020,
261  0.015, 0.065, 0.110, 0.280,
262  0.070, 0.240, 0.100, 0.100 };
263 
264  for (int i = 0; i < n_modes; i++) {
265  if (i < 7)
266  br[i] *= proton_frac;
267  else
268  br[i] *= neutron_frac;
269  }
270 
271  // randomly generate a number between 1 and 0
273  CLHEP::HepRandomEngine &engine = rng->getEngine();
274  CLHEP::RandFlat flat(engine);
275  double p = flat.fire();
276 
277  // loop through all modes, figure out which one our random number corresponds to
278  double threshold = 0;
279  for (int i = 0; i < n_modes; i++) {
280  threshold += br[i];
281  if (p < threshold) {
282  // once we've found our mode, return it!
283  mode = i + 1;
284  return mode;
285  }
286  }
287 
288  // error message, in case the random number selection fails
289  std::cout << "Random selection of final state failed!" << std::endl;
290  exit(1);
291  }
292 
293  // if specific annihilation mode specified, just use that
294  else {
295  int mode = (int) gOptDecayMode;
296  return mode;
297  }
298 }
299 
NeutronOsc(fhicl::ParameterSet const &p)
void beginRun(art::Run &run) override
void SetOrigin(simb::Origin_t origin)
Definition: MCTruth.h:78
cout<< "-> Edep in the target
Definition: analysis.C:54
double MinX() const
Returns the world x coordinate of the start of the box.
Definition: BoxBoundedGeo.h:90
Geometry information for a single TPC.
Definition: TPCGeo.h:37
double MaxX() const
Returns the world x coordinate of the end of the box.
Definition: BoxBoundedGeo.h:93
art::ProductID put(std::unique_ptr< PROD > &&)
Definition: Run.h:148
Particle class.
void Add(simb::MCParticle &part)
Definition: MCTruth.h:77
int SelectAnnihilationMode(int pdg_code)
Definition: Run.h:30
void beginJob() override
ProductID put(std::unique_ptr< PROD > &&product)
Definition: Event.h:102
base_engine_t & getEngine() const
base_engine_t & createEngine(seed_t seed)
#define DEFINE_ART_MODULE(klass)
Definition: ModuleMacros.h:42
std::string DetectorName() const
Returns a string with the name of the detector, as configured.
long seed
Definition: chem4.cc:68
T get(std::string const &key) const
Definition: ParameterSet.h:231
TString part[npart]
Definition: Style.C:32
double MinZ() const
Returns the world z coordinate of the start of the box.
An art service to assist in the distribution of guaranteed unique seeds to all engines within an art ...
void produce(art::Event &e) override
double MaxY() const
Returns the world y coordinate of the end of the box.
const genie::EventRecordVisitorI * mcgen
unsigned int NTPC(unsigned int cstat=0) const
Returns the total number of TPCs in the specified cryostat.
static art::ServiceHandle< art::RandomNumberGenerator > & rng()
std::string to_string(Flag_t< Storage > const flag)
Convert a flag into a stream (shows its index).
Definition: BitMask.h:187
genie::NeutronOscMode_t gOptDecayMode
double MaxZ() const
Returns the world z coordinate of the end of the box.
#define LOG_DEBUG(id)
TPCGeo const & TPC(unsigned int const tpc=0, unsigned int const cstat=0) const
Returns the specified TPC.
Event generator information.
Definition: MCTruth.h:30
Float_t e
Definition: plot.C:34
Namespace collecting geometry-related classes utilities.
double MinY() const
Returns the world y coordinate of the start of the box.
Event Generation using GENIE, cosmics or single particles.
art framework interface to geometry description
cet::coded_exception< error, detail::translate > exception
Definition: exception.h:33
Event finding and building.
NeutronOsc & operator=(NeutronOsc const &)=delete